

- Sporophyte is creeping in the mud & possess root, rhizome and leaves
- Rhizome is horizontal structure with fairly long internodes. From the rhizome, leaves and roots are given out from the nodes.
- The roots are adventitious, given out from the nodes from the underside of rhizome. They absorb minerals, salt and water, and anchor sporophyte in the mud.
- The **leaves** are alternately produced from **nodes** on rhizome and are arranged in **distichous manner**.
- Each mature leaf shows a **long petiole** with **four leaflets** at the tip. The leaflets are actually one pair is placed a little higher than the other in **opposite decussate manner**.
- Each **leaflet** shows very **minute** petiole (sub-sessile). The leaflet is **obovate** in **shape** with entire or **serrate margin**, **rounded apex** and **dichotomously venation**.

00106

rhizorr

T.S. OF ROOT:

- Epidermis
- Cortex: Outer

 aeparenchymatous
 cortex, middle
 parenchymatous
 cortex & inner
 cortex
 sclerenchymatous.
- Stele: Endodermis, pericycle, radial vascular bundles with diarch & exarch xylem.

Fig. 2. A, B. Marsilea. Internal structure of rhizome. A. Diagrammatic, B. A part cellular.

Dr. Neeraja Tutakne, Asst Prof. Botany, SIES College (Autonomous), Sion (West)

T.S. OF RHIZOME:

- Epidermis
 - Cortex: Outer
 parenchymatous cortex
 with a ring of air
 chambers
 (aerenchymatous), inner
 parenchymatous cortex
 with sclerenchymatous
 patch.
- **Stele:** Amphiphloic siphonostele.
- Pith: Present in the centre and can be parenchymatous (in submerged plants) or sclerenchymatous (terrestrial plants)

T.S. OF PETIOLE:

- Epidermis
 - Cortex: Outer cortex
 parenchymatous,
 Middle cortex
 aerenchymatous
 (septate), inner cortex
 parenchymatous.
- Stele: Protostele (plectostelic). Xylem consists of two plates with metaxylem in the centre & protoxylem towards the periphery.

T.S. OF LEAFLET:

- Upper epidermis
- Mesophyll: Isobilateral (in the submerged species), dorsiventral with aerenchyama (in terrestrial species)
- Vascular bundles: Concentric vascular bundles arranged in parallel series.
- Lower epidermis

REPRODUCTION

- Vegetative: Tubers
- Asexual: Heterosporous (Microspores, megaspores), microsporangia & megasporangia in sporocarps

SPOROCARP

External morphology of sporocarp

- Young sporocarps Soft and green
- Mature sporocarps Dark brown and hard (Withstand desiccation 20 to 25 years).
- Sporocarp = Pedicel or stalk + Body, Pt. of attachment = Raphe.
- Distal end of raphe 1 or 2 teeth-like projections known as horns.
- Sporocarp wall Hard, thick, resistant. Differentiated into 3 layers – Outer (epidermis with sunken stomata), middle (thick walled palisade) and inner (thin walled palisade).

SPOROCARP

Vascular supply of sporocarp

- V.L.S. Single vascular strand enters the sporocarp near the lower horn and continues forward along the upper side forming a midrib (**dorsal bundle**).
- From midrib, the lateral branches (lateral bundles) arise & pass to both sides.
- **Placental bundle** develops from the point of forking of lateral bundle which enters into the receptacle bearing sporangia and dichotomises.
- **Sporocarp Bivalved structure** with **closed network** of **vascular system**.
- Fertile sporophyll with marginal sori. Developed from 2 folded pinnae.
- Sori Gradate type, megasporangia in upper rows, microsporangia in lower rows and leptosporangiate type of sporangial development.

V.L.S.

(Vertical Longitudinal Section)

 Section is cut vertically but the sporocarp is cut longitudinally.

H.L.S.

(Horizontal Longitudinal Section)

• Section is cut horizontally but the sporocarp is cut longitudinally.

V.T.S.

(Vertical Transverse Section)

 Section is cut vertically but the sporocarp is cut transversely.

Vertical longitudinal section (V.L.S.)

- Many sori arranged in vertical rows.
- Either megasporangia or microsporangia are visible.
- Each sorus is surrounded by an indusium.
- The development of sori is of gradate type.
- The gelatinous mucilage ring is more prominent in dorsal side.

Horizontal Longitudinal Section (H.L.S.)

- Each sorus is cut transversely
- Sorus is an elongated structure, covered by a delicate indusium.
- Sori are of gradate type, in basipetal pattern.
- Sorus consists of a row of megasporangia at top and two rows of microsporangia on either sides.
- Mucilage ring is present in two masses on dorsal and ventral sides.

Vertical transverse section (V.T.S.)

- Two sori opposite to each other.
- Each sorus shows many megasporangia in the middle while 1-2 microsporangia at the ends.
- The mucilage ring is present only on the dorsal side.

SPORANGIUM – Structure & Dehiscence

Structure

- Each micro or megasporngium, consists of a single layered jacket enclosing spore mother cells.
- At maturity, the spore mother cells undergo meiosis followed by few mitosis to produce 32-64 spores.
- In microsporangium, all spores survive while in megasporangium, only one spore survives and becomes a very large megaspore.

Dehiscence

- During dehiscence, sporocarp imbibes water and the gelatinous ring swells, expands and pushes out of the split sporocarp.
- It also pulls the sori and the sori come out in a row.
- Indusium gelatinise and liberate the sporangia.
- Later the sporangial walls also gelatinise and the spores are liberated in the surrounding water.

GAMETOPHYTE – Male

Microspore and male gametophyte

- Microspore Yellowish, spherical haploid with a triradiate ridge & consists of uninucleate cytoplasm is surrounded by spore wall.
- Spore wall 2 layered endosporium & exosporium.
- Spore absorbs water and increase considerably in size.
- Nucleus divides to form a small prothalial cell & large apical cell.
- Apical cell divides to form two antheridial initials.
- Antheridial initial few jacket cells externally & one spermatogenous cell internally.
- Spermatogenous cell forms 16 androcytes which represent one antheridium.
- At this stage, prothalial cell and jacket disintegrate and two groups of androcytes remain free but within the microspore.
- Each androcyte now develops into multiciliated, coiled spermatozoid with vesicle at one end.
- Thus, development of male gametophyte is endosporic.

GAMETOPHYTE – Male

GAMETOPHYTE – Female

Megaspore and female gametophyte

- Mature megaspore is elliptical with a short papilla at one end.
- Spore wall 2 layered endosporium & exosporium.
- Papilla is surrounded only by endosporium.
- Nucleus is located in the apical papilla and is surrounded by a dense cytoplasm.
- The rest of the spore is filled with watery cytoplasm & food.
- Megaspore germinates to give rise to female gametophyte. The development is endosporic.
- Apical nucleus is divided into unequal nuclei. One nucleus remains in the dense cytoplasm while the larger one migrates to watery cytoplasm.
- Transverse wall is formed at the base of the papilla separating the upper small cell and lower larger cell called prothalial cell.
- Prothalial cell do not divide further and acts as nutritive cell.
- Upper cell soon develops an archegonium with a short neck and venter. The neck has single neck canal cell surrounded by jacket made up of two tiers of four cells each.
- Venter contains a venter canal cell. At maturity, megaspore absorbs water, the tip of the megaspore splits in **tri-radiate fissure** and the archegonium is exposed.
- Female gametophyte is surrounded by a gelatinous mass & a funnel shaped opening at the top.

GAMETOPHYTE – Fertilization

- During fertilization, spermatozoids or male gametes are liberated from ruptured male gametophyte and are attracted by the chemical substances present in the gelatinous mass.
- Movement of spermatozoids under the influence of chemical substances is called chemotaxis.
- Spermatozoids swarm around and enter the gelatinous matrix of the female gametophyte. Only one spermatozoid enters the open neck and fertilizes the egg to form diploid zygote.

SPOROPHYTE – Development

- Zygote develops into embryo. Embryo shows cotyledons and roots developed from upper half of the embryo while stem and foot developed from lower half of embryo.
- The cotyledon comes out from calyptra. The rhizoids are developed at first on the root. Very soon the embryo settles in the mud and develops into new sporophyte.