

a The string looped around a pencil and twisted represents a double helix without supercoils.

Demonstration of Supercoiling

b As the string unwinds, supercoils form ahead of the unwinding if the helix is not allowed to rotate.

c Rotation relieves the tension from supercoiling.

Semi discontinuous DNA replication

Restrictions on DNA polymerases

b DNA polymerase cannot extend the nucleotide chain in the $3' \rightarrow 5'$ direction.

c DNA polymerase cannot initiate synthesis on a template strand without paired nucleotides.

Figure 2.18 Restrictions on DNA polymerases.

An RNA primer for initiation of DNA synthesis

Primer removal by DNA polymerase I

a DNA polymerase III leaves a nick between the 3' end of the newly sythesized fragment and the 5' end of the RNA primer.

b DNA polymerase I binds at the nicked site.

Molecular structure of DNA Polymerase III holoenzyme in E.coli

Model of DNA replication in Prokaryotes with simultaneous synthesis of leading and lagging strands

leading and lagging strands.

Prokaryotic DNA Polymerases

Table 2.1 Prokaryotic DNA Polymerases		
Polymerase	Functions	
DNA polymerase I	Removal of nucleotides during DNA repair $(5' \rightarrow 3' \text{ exonuclease});$	
	synthesis of DNA during repair;	
	synthesis of short gaps in DNA;	
	primer removal $(5' \rightarrow 3')$ exonuclease);	
	proofreading $(3' \rightarrow 5' \text{ exonuclease})$	
DNA polymerase II	Synthesis of DNA during repair;	
	proofreading $(3' \rightarrow 5' \text{ exonuclease})$	
DNA polymerase III	DNA synthesis; proofreading $(5' \rightarrow 3' \text{ exonuclease})$	

Proofreading newly synthesized DNA

b DNA polymerase adds a mispaired nucleotide.

c DNA polymerase reverses direction and acts as a $3' \rightarrow 5'$ exonuclease to remove the mispaired nucleotide.

Eukaryotic DNA Polymerases

Table 2.2 Eukaryotic DNA Polymerases		
Mammalian Polymerase	Corresponding Polymerase in Yeast	Functions
α	pol I	Synthesis of lagging strand; primer synthesis
β	none	Synthesis of DNA during repair
δ	pol III	Synthesis of leading strand; proofreading $(3' \rightarrow 5' \text{ exonuclease})$
3	pol II	Synthesis of DNA during repair; proofreading $(3' \rightarrow 5' \text{ exonuclease})$
γ	mitochondrial DNA polymerase	Mitochondrial DNA synthesis; proofreading $(3' \rightarrow 5' \text{ exonuclease})$

Eukaryotic DNA Polymerases

a The 48 and 58 kD subunits of DNA polymerase α may function on their own as a primase. **b** They may also function as a primase when part of the entire enzyme.

Figure 2.24 DNA polymerase α in mammals.

Model of DNA replication in Eukaryotes with simultaneous synthesis of leading and lagging strands

Origin of replication

Bidirectional replication

a Replication "bubbles" forming from two origins of replication.

b Replication bubbles (indicated by arrows) in Drosophila melanogaster DNA.

Figure 2.27 Bidirectional replication. (Photo courtesy of D. S. Hogness.)

Strategy for replicating circular DNA (Theta mode replication in *E. coli*)

Electron micrograph of theta mode replication in E. coli

Rolling circle mode replication

Linear DNA Replication

Figure 2.32 The linear DNA replication paradox. How can the gap at the end of the linear molecule be filled?

D loop mode replication

A model for replicating the ends of linear chromosomes in eukaryotes

