

SIES College of Arts, Science & Commerce (Autonomous)

Department of Statistics

Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for F.Y.B.Sc. (Credit Based Semester and Grading System with effect from the academic year 2018–2019)

SEMESTER I

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS I			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	TYPES OF DATA AND DATA CONDENSATION	1	
PAPER I SIUSSTA11	II	MEASURES OF CENTRAL TENDENCY	1	2
	III	MEASURES OF DISPERSION, SKEWNESS & KURTOSIS	1	
TITLE OF COURSE		STATISTICAL MET	HODS I	
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	ELEMENTARY PROBABILITY THEORY	1	
PAPER II SIUSSTA12	II	DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS	1	2
	III	STANDARD DISCRETE DISTRIBUTIONS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP1	SIUSSTA11	3	2
	SIUSSTA12	3	

SEMESTER II

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS II			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	CORRELATION AND REGRESSION ANALYSIS	1	
PAPER I SIUSSTA21	II	TIME SERIES	1	2
	III	INDEX NUMBERS	1	
TITLE OF COURSE	STATISTICAL METHODS II			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	CONTINUOUS RANDOM VARIABLES	1	
PAPER II SIUSSTA22	II	STANDARD CONTINUOUS DISTRIBUTIONS	1	2
	III	ESTIMATION AND TESTING OF HYPOTHESIS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP2	SIUSSTA21	3	2
	SIUSSTA22	3	2

SYLLABUS FOR F.Y.BSc. UNDER AUTONOMY SEMESTER I PAPER I

- To be well versed with data collection techniques.
- To effectively use data visualization and summarization techniques to understand data.

Course Code	Title	Credits	
SIUSSTA11	DESCRIPTIVE STATISTICS I	2 Credits	
		(45 lectures)	
UNIT I: TYPI	ES OF DATA AND DATA CONDENSATION	15 Lectures	
Types of data:	Qualitative and Quantitative data, Time series data and cross section		
data, discrete a and ratio.	data, discrete and continuous data. Different types of scales: nominal, ordinal, interval and ratio.		
Concept of pop	ulation and sample. Census and Sample survey. Relative merits and		
demerits. Statis	tical Organizations and their functions (CSO, NSSO). Survey findings.		
Primary data: C	Concept of a questionnaire and a schedule. Secondary data: Sources.		
Case studies ill	ustrating use of Statistics in different sectors.		
Diagrams: Bar	diagrams, Pie diagram		
Classification a	nd Tabulation of categorical data up to order three. Association of		
attributes: Yule	e's coefficient of association (Q), Yule's coefficient of Colligation (Y).		
UNIT II: MEASURES OF CENTRAL TENDENCY		15 Lectures	
Univariate frequency distribution of discrete and continuous variables. Cumulative			
frequency distribution. Graphical representation of frequency distribution by			
Histogram, Frequency curve, Cumulative frequency curves, Stem and leaf diagram.			
Central tendend	cy of data. Requisites of a good measure of central tendency. Positional		
averages: Medi	an, Mode, Partition Values: Quantiles. Mathematical averages:		
Arithmetic mea	an (Simple mean, trimmed mean, weighted mean, combined mean),		
Geometric mea	n, Harmonic mean. Merits and demerits of different measures.		
UNIT III: MEASURES OF DISPERSION, SKEWNESS & KURTOSIS 15 Lecture		15 Lectures	
Concept of dispersion. Requisites of good measure of dispersion.			
Absolute meas	Absolute measures of dispersion: Range, Quartile Deviation, Mean absolute deviation,		
Standard deviation and corresponding relative measures of dispersion. Combined			
variance.			
Raw & Central moments and relationship between them.			
Concept of Skewness and Kurtosis: Absolute and Relative measures of Skewness:			
Karl Pearson's, Bowley's and Measure based on moments. Measure of Kurtosis based			
on moments.			
Box &Whisker Plot.			

SEMESTER I : PRACTICALS BASED ON COURSE SIUSSTA11

1.	Tabulation and Classification of Data
2.	Theory of attributes
3.	Data Visualization (Excel)
4.	Measures of central tendency I
5.	Measures of central tendency II (Excel)
6.	Measures of dispersion I
7.	Measures of dispersion II (Excel)
8.	Moments, Measures of Skewness and Kurtosis I
9.	Moments, Measures of Skewness and Kurtosis II (Excel)

PAPER II

- To understand the concepts of probability and probability distribution
- To fit an appropriate distribution using MS excel to data sets

Course	Title	Credits	
Code			
SIUSSTA12	STATISTICAL METHODS I	2 Credits	
		(45 lectures)	
UNIT I: ELEMENTARY PROBABILITY THEORY		15 Lectures	
Random exper	iment, Sample space, Event, Operation of events, mutually		
exclusive and	exhaustive events.		
Classical (Mat	hematical), Empirical (Statistical) definitions of Probability and		
their properties	s. Subjective probability.		
Theorems on A	Addition and Multiplication of probabilities.		
Independence	of events, pair-wise and mutual independence of three events.		
Conditional pr	obability, Bayes' theorem.		
UNIT II: DISCRETE RANDOM VARIABLES AND PROBABILITY 15 Lectures			
Concept of discrete random variable. Probability distribution and cumulative			
distribution function, definition and their properties.			
Expectation of a random variable. Theorems on Expectation & Variance.			
Raw and Central moments and their relationships (up to order four).			
Concepts of Skewness and Kurtosis.			
Joint (Bivariate) probability distribution of two discrete random variables.			
Marginal and o	Marginal and conditional distributions. Coefficient of Correlation. Independence		
of two random variables.			
UNIT III: STANDARD DISCRETE DISTRIBUTIONS 15 Lectures		15 Lectures	
Discrete Unifo	Discrete Uniform, Hypergeometric, Binomial and Poisson distributions: mean,		
variance and recurrence relation for probability, fitting of distribution.			
Binomial appr	Binomial approximation to Hypergeometric distribution. Poisson approximation		
to Binomial distribution.			

SEMESTER I: PRACTICALS BASED ON COURSE SIUSSTA12

1	Probability	
2	Conditional Probability	
3	Discrete Probability distributions	
4	Bivariate probability distributions	
5	Standard Discrete distributions I	
6	Standard Discrete distributions II	
7	Use of MS Excel	

SYLLABUS FOR F.Y.BSc. UNDER AUTONOMY

SEMESTER II PAPER I

- To understand forecasting techniques to predict future trend in time series
- To understand concept of index numbers to calculate real income and dearness allowance,

Course Code	Title	Credits	
SIUSSTA21	DESCRIPTIVE STATISTICS II	2 Credits	
		(45 lectures)	
UNIT I: COR	RELATION AND REGRESSION ANALYSIS	15 Lectures	
Bivariate frequ	ency distribution, marginal and conditional distribution, Scatter		
Diagram, Bubb	ble chart. Product moment correlation coefficient and its properties.		
Spearman's Ra	nk correlation (with and without ties).		
Linear regressi	on. Fitting a straight line by method of least squares. Coefficient		
of determinatio	n Relation between regression coefficients and correlation		
coefficient.			
Fitting of curve	es reducible to linear form by transformation. Fitting a quadratic		
curve by metho	od of least squares.		
UNIT II: TIM	15 Lectures		
Definition of ti			
Exponential Sr			
Estimation of t			
Moving averages, Method of least squares (linear trend only).			
Merits and demerits of these methods.			
Estimation of seasonal component by, Method of simple averages, Ratio to			
moving averag	e method, Ratio to trend method.		
UNIT III: INI	DEX NUMBERS	15 Lectures	
Index numbers	as a comparative tool. Stages in the construction of Index		
Numbers. Simple and Composite Index Numbers. Simple and weighted aggregate			
index numbers. Simple and weighted average of relatives.			
Special index numbers: Laspeyre's, Paasche's, Marshal-Edgeworth's, Dorbisch &			
Bowley's and Fisher's Index Numbers.			
Quantity Index	Numbers and Value Index Number.		
Time reversal	Time reversal test, Factor reversal test, Circular test.		
Fixed base Index Numbers, Chain base Index Numbers, Base shifting, Splicing.			
Cost of living i	ndex number, Concept of real income.		

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA21

1.	Correlation analysis
2.	Regression analysis
3.	Correlation & Regression analysis (Excel)
4.	Curve fitting (Excel)
5.	Time series I
6.	Time series II (Excel)
7.	Index number-I
8.	Index number-II

PAPER II

- To understand the importance of Bell curve and other distributions used in data analysis in industry.
- To assess population characteristics on the basis of sample using estimation and testing theory.

Course Code	Title	Credits	
SIUSSTA22	STATISTICAL METHODS II	2 Credits	
		(45 lectures)	
UNIT I: CON	15 Lectures		
Definition of co	ontinuous random variable, probability density function and		
cumulative dist	ribution function. Graphical representation and properties.		
Expectation of	a continuous random variable, Properties.		
Raw and centra	I moments, Relationship between them (up to order 4).		
Measures of lo	cation, dispersion, skewness and kurtosis.		
UNIT II: STA	NDARD CONTINUOUS DISTRIBUTIONS	15 Lectures	
Uniform, Expo	nential (with location, scale parameter) and Normal distribution.		
Derivations of	mean, median and variance of Uniform and Exponential		
distribution. La	ck of memory property of exponential distribution.		
Properties of N	Properties of Normal distribution. Use of normal tables. Normal approximation to		
Binomial and F	Binomial and Poisson distribution.		
UNIT III: ESTIMATION AND TESTING OF HYPOTHESIS 15 Lectures			
Parameter, statistic, estimator and estimate, sampling distribution, bias and			
standard error of	of an estimator.		
Central Limit t	Central Limit theorem (statement only).		
Sampling distri	Sampling distributions of sample mean and sample proportion. (For large sample		
only)	only)		
Point and Interval estimate of mean and proportion based on single sample of			
large size and difference between two means and proportions based on large			
sample sizes.			
Null and alterr	Null and alternate hypotheses, Simple and composite hypothesis. Type I and II		
errors, Critical	region, Size of the test, Level of significance. Power of the test		
Applications of	Applications of Normal Distribution: Tests for specified value of population		
mean and population proportion. Tests for equality of two population means and			
population prop	portions.		

SEMESTER II: PRACTICALS BASED ON COURSE SIUSSTA22

1.	Continuous distributions
2.	Standard Continuous distributions
3.	Normal distribution
4.	Point and Interval Estimation
5.	Large sample tests
6.	Demonstration of Central limit theorem (Excel)
7.	Use of MS Excel

REFERENCES:

- 1. Agarwal B.L. (1978). *Basic Statistics*: New Age International Ltd.
- 2. David S.(1994). *Elementary Probability* : Cambridge University Press.
- Goon A.M., Gupta M.K.& Dasgupta B. (1968). *Fundamentals of Statistics*, Volume II: The World Press Private Limited, Calcutta.
- 4. Gupta S.C.& Kapoor V.K.(2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 5. Gupta S.C.& Kapoor V.K.(2014). Fundamentals of Applied Statistics: Sultan Chand & Sons
- 6. Hoel P.G.(1947). Introduction to Mathematical Statistics: Asia Publishing House
- 7. Hogg R.V. & Tannis E.P.(1977). Probability and Statistical Inference: McMillan Publishing Co. Inc.
- 8. Kothari C.R.(1985). Research Methodology: Wiley Eastern Limited.
- 9. Medhi, J. (2013). Statistical Methods, An Introductory Text. Second Edition: New Age International Ltd.
- 10. Pitan Jim. (1977) . Probability: Narosa Publishing House.
- 11. Spiegel M.R. (1961). Theory and Problems of Statistics. Schaum's Publications series: Tata McGraw-Hill.

EXAMINATION PATTERN

Internal Assessment of Theory per Course per Semester

1. Class Test	20 Marks.
2. Project / Assignment / Presentation etc.	20 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of 2 hours duration and 60 marks based on the three units shall be held for each course.

Pattern of Theory question paper:

There shall be four compulsory questions of 15 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

Semester End Practical Examination per Course

1. Journal10 Marks.2. Practical Examination40 Marks.At the end of the semester, practical examination of 1 hour 30 minutes duration and 40 marks shall beheld for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

SIES College of Arts, Science & Commerce (Autonomous)

Department of Statistics

Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for S.Y.B.Sc. (Credit Based Semester and Grading System with effect from the academic year 2018–2019)

SEMESTER III

THEORY

TITLE OF COURSE		PROBABILITY DISTRIBUTIONS		
COURSE CODE	UNIT TOPICS LECTURES/W EEK		CREDITS	
	Ι	UNIVARIATE RANDOM VARIABLES (DISCRETE AND CONTINUOUS)	1	
PAPER I SIUSSTA31	п	STANDARD DISCRETE PROBABILITY DISTRIBUTIONS	1	2
	ш	STANDARD CONTINUOUS PROBABILITY DISTRIBUTIONS	1	
TITLE OF COURSE	TITLE OF COURSE THEORY OF SAMPLING			
COURSE CODE	UNIT	TOPICS	LECTURES/W EEK	CREDITS
	Ι	CONCEPTS OF SAMPLING & SIMPLE RANDOM SAMPLING	1	
PAPER II SIUSSTA32	II	STRATIFIED SAMPLING	1	2
	ш	RATIO & REGRESSION ESTIMATION AND SAMPLING METHODS	1	
TITLE OF COURSE		OPERATIONS RESEARCH I	-	
COURSE CODE	UNIT	TOPICS	LECTURES/W EEK	CREDITS
DADED III	Ι	LINEAR PROGRAMMING PROBLEM	1	
SIUSSTA33	II	TRANSPORTATION PROBLEM	1	2
	III	ASSIGNMENT PROBLEM & SEQUENCING	1	

PRACTICALS

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS	
	SIUSSTA31	3		
SIUSSTAP3	SIUSSTA32	3	3	
	SIUSSTA33	3		

SEMESTER IV

TITLE OF COURSE	PROBABILITY AND SAMPLING DISTRIBUTIONS			
COURSE CODE	UNIT	CREDITS		
	I	NORMAL DISTRIBUTION	1	
SIUSSTA41	П	BIVARIATE PROBABILITY DISTRIBUTIONS	1	2
	III	EXACT SAMPLING DISTRIBUTIONS	1	
TITLE OF COURSE	Α	NALYSIS OF VARIANCE & DESIGN	OF EXPERIME	NTS
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	ANALYSIS OF VARIANCE	1	
PAPER II SIUSSTA42	II	DESIGN OF EXPERIMENTS	1	2
510551112	III	LATIN SQUARE DESIGN & FACTORIAL EXPERIMENTS	1	
TITLE OF COURSE		OPERATIONS RESEARCH II		
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	CPM AND PERT	1	
PAPER III SIUSSTA43	II	GAME THEORY	1	2
	III	DECISION THEORY	1	

THEORY

PRACTICALS

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
SIUSSTAP4	SIUSSTA41	3	-
	SIUSSTA42	3	3
	SIUSSTA43	3	

SYBSc SYLLABUS UNDER AUTONOMY SEMESTER III

PAPER I

- To study characteristics of discrete and continuous distributions.
- To learn R software to study distributions.

Course Code	Title	Credits	
		2 Credits	
SIUSSTA31	PROBABILITY DISTRIBUTIONS	(45 lectures)	
UNIT I: UNIV	ARIATE RANDOM VARIABLES (DISCRETE AND		
CONTINUOU	S)		
Moment Gener	ating Function, Cumulant generating Function and Characteristic		
function-Defini	tion and properties: Effect of change of origin and scale, MGF, CGF		
and Characteris	stic function of sum of n independent random variables, moments	15 Lectures	
from MGF, CGF	and Characteristic function. Relationship between moments and		
cumulants.			
Transformation	of univariate random Variable.		
UNIT II :STANDARD DISCRETE PROBABILITY DISTRIBUTIONS Degenerate, Uniform, Two point, Bernoulli, Binomial, Poisson, Geometric, Negative Binomial, Hypergeometric, Truncated Binomial, Truncated Poisson (point of truncation 0) distributions.			
The following a	spects (wherever applicable) of the above distributions to be	15 Lectures	
Probability mas Standard deviat Additive proper	as function, Cumulative distribution function, Mean, Mode and ion. Moment Generating Function, Cumulant Generating Function, rty, Recurrence relation for Central Moments, Skewness and		
Kurtosis, Limiting distribution, Fitting of Distribution.			
UNIT III : STA Rectangular, Tr & two paramete	15 Lectures		
The following aspects of the above distributions(wherever applicable) to be			
discussed: Maan Madian Mada & Standard deviation Mamort Concepting Exaction			
Mean, Median, Mode & Standard deviation. Moment Generating Function,			

Additive property, Cumulant Generating Function. Skewness and Kurtosis(without proof). Fitting of Distribution. Interrelations between the distributions.

SEMESTER III: PRACTICALS BASED ON COURSE SIUSSTA31

- 1. Moment Generating Function, Cumulant Generating Function.
- 2. Characteristic Function, Transformation of univariate discrete & continuous random variables.
- 3. Standard Discrete Distributions.
- 4. Fitting of Standard Discrete Distributions.
- 5. Standard Continuous distributions.
- 6. Fitting of Standard Continuous Distributions.
- 7. Use of R.

REFERENCES:

- 1. Goon A.M., Gupta M.K & Dasgupta B. (2013). An Outline of Statistical Theory,
- 2. Gupta S.C.& Kapoor V.K. (2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 3. Hoel P. G. (1966). Introduction to Mathematical Statistics, Fourth Edition : John Wiley & Sons Inc.
- Hogg R. V.& Craig A.T.(2012) Introduction to Mathematical Statistics, Seventh Edition: Collier McMillan Publishers.
- Hogg R. V.& Tannis E. A. (1988). *Probability and Statistical Inference*, Third Edition: Collier McMillan Publishers.
- 6. Kapur J. N.& Saxena H.C. Mathematical Statistics, Fifteenth Edition : S. Chand & Company Ltd.
- 7. Medhi J. (2013). Statistical Methods; An Introductory Text, Second Edition: Wiley Eastern Ltd.

- Miller I., Miller M.& Freund J.E.(1999) *John E. Freund's Mathematical Statistics*, Sixth Edition: Pearson Education Inc.
- Mood A. M., Graybill F.A., & Boyes D. C. (2001). *Introduction to the theory of Statistics*, Third Edition: McGraw-Hill Book Company.

Vol. 1, Third Edition: The World Press Pvt. Ltd.

PAPER II

- To learn different methods of data collection.
- To analyse the collected data using sampling techniques.

Course Code	Title	Credits
		2 Credits
SIUSSTA32	THEORY OF SAMPLING	(45 lectures)
UNIT I: CONC Population, Popu Unbiasedness, M Census survey, S appropriate Ques functions. Metho Definition, Samp Random number Expectation & V estimators. (WR/ Variance of the e (WR/WOR).Esti variables & attrib	EPTS OF SAMPLING & SIMPLE RANDOM SAMPLING lation unit, Sample, Sample unit, Parameter, Statistic, Estimator, Bias, ean square error & Standard error. ample Survey. Steps in conducting a sample survey, Designing tionnaire. Sampling and Non-sampling errors. NSSO, CSO and ds of Probability and Non Probability sampling. ling with & without replacement (WR/WOR). Lottery method & use of s to select Simple random sample. Estimation of population mean & total. ariance of the estimators, Unbiased estimator of variance of these WOR).Estimation of population proportion and total. Expectation & stimators, Unbiased estimator of variance of these stimators, Unbiased estimator of these estimators. mation of Sample size based on a desired accuracy in case of SRS for putes. (WR/WOR).	15 Lectures
UNIT II: STRA Need for Stratific Stratified Sampli Estimation of po- within each strata estimators of var Proportional allo of Simple Rando Neyman allocation Estimation of po- within each strata	TIFIED SAMPLING cation of population. Definition of Stratified Sample. Advantages of ng. pulation mean & total in case of Stratified Random Sampling (WOR a). Expectation & Variance of the unbiased estimators, Unbiased iances of these estimators. cation, Optimum allocation with and without varying costs. Comparison m Sampling, Stratified Random Sampling using Proportional allocation & on. pulation proportion & total in case of Stratified Random Sampling (WOR a).	15 Lectures
UNIT III: RAT Ratio Estimators Estimators. Estim	IO & REGRESSION ESTIMATION AND SAMPLING METHODS for population Ratio, Mean & Total. Expectation & MSE of the nators of MSE.	15 Lectures

 Regression Estimators for population Mean & Total. Expectation & Variance of the

 Estimators assuming known value of regression coefficient 'b'. Estimation of 'b'.

 Resulting variance of the estimators. Comparison of Ratio, Regression & mean per unit

 estimators.

Introduction to Systematic sampling, Cluster sampling & Two Stage sampling.

SEMESTER III: PRACTICALS BASED ON COURSE SIUSSTA32

- 1. Designing of Questionnaire.
- 2. Simple Random Sampling for Variables.
- 3. Simple Random Sampling for Attributes.
- 4. Estimation of Sample Size in Simple Random Sampling.
- 5. Stratified Random Sampling.
- 6. Ratio Estimation.
- 7. Regression Estimation.

REFERENCES:

- 1. Cochran. W.G. (1978). Sampling Techniques, Third Edition: Wiley Eastern Limited
- 2. Daroga Singh & F.S. Chaudhary. (1986). *Theory and Analysis of Sample Survey Design :* Wiley Eastern Ltd
- 3. Des Raj. (1968). Sampling Theory: McGraw Hill Series in Probability and Statistics.
- 4. Gupta S.C.& Kapoor V.K. (2007). *Fundamentals of Mathematical Statistics*: Sultan Chand & Sons
- 5. Mukhopadhyay P. (1998). Theory and Methods of Survey Sampling: Prentice Hall of India
- 6. Murthy M.N.(1967). *Sampling Theory and methods*: Statistical Publishing Society.
- P.V. Sukhatme & B.V. Sukhatme. (1984). Sampling Theory of Surveys with Applications, Third Edition: Iowa State University Press. Pvt. Ltd.
- 8. Sampath S.(2005). Sampling Theory and Methods, Second Edition: Narosa Publishing House

PAPER III

- To understand typical industry problems like transportation, assignment etc.
- To learn MS Excel to solve problems related to optimization.

Course Code	Title	Credits		
510551A33	OPERATIONS RESEARCH I	(45 lectures)		
UNIT I: LINE	AR PROGRAMMING PROBLEM			
Mathematical F	ormulation: Maximization & Minimization. Solution, Feasible			
Solution, Basic	Feasible Solution, Optimal solution. Graphical Solution for			
problems with t	wo variables. Simplex method of solving problems with two			
or more variable	es. Big M method. Concept of Duality. Its use in solving	15 Lectures		
L.P.P. Relations				
Economic inter				
UNIT II: TRA	NSPORTATION PROBLEM			
Mathematical F	ormulation, Solution, Feasible Solution. Initial Basic Feasible			
Solution by Nor	rth-West Corner Rule, Matrix Minima Method, Vogel's			
Approximation	Method. Optimal Solution by MODI Method. Optimality test,	15 Lootumor		
Improvement p	rocedure.	15 Lectures		
Variants in Trai	Variants in Transportation Problem: Unbalanced, Maximization, Prohibited			
route type.				

SEMESTER III: PRACTICALS BASED ON COURSE SIUSSTA33

- 1. Formulation and Graphical Solution of L.P.P.
- 2. Simplex Method.
- 3. Duality.
- 4. Transportation.
- 5. Assignment.
- 6. Sequencing.
- 7. Use of TORA & MS Excel Solver

<u>REFERENCES</u>:

- Bronson R. (1997). Schaum Series book in Operations Research. Second edition: Tata McGraw Hill Publishing Company Ltd.
- 2. Kantiswaroop & Gupta M. (2010). Operations Research, Twelfth Edition: S Chand & Sons.
- Sasieni M., Yaspan A.& Friedman L. (1959). Operations Research; Methods and Problems: John Wiley & Sons.
- Sharma J. K. (1989). Mathematical Models in Operations Research : Tata McGraw Hill Publishing Co. Ltd.
- 5. Sharma J.K. (2001). Quantitative Techniques for Managerial Decisions: MacMillan India Ltd.
- 6. Sharma S.D. Operations Research. Eleventh Edition: Kedar Nath Ram Nath & Company.
- 7. Taha H. A.(2010). Operations Research. Ninth Edition: Prentice Hall of India.
- Wagner H. M. (1970). Principles of Operations Research with Applications to Management Decisions, Second Edition : Prentice Hall of India Ltd.

SYBSc SYLLABUS UNDER AUTONOMY SEMESTER IV PAPER I

- To study normal distribution and its applications.
- To use sampling distributions in testing equality of means, independence of attributes, goodness of fit, etc.

Course Code	Title	Credits		
SIUSSTA41	PROBABILITY AND SAMPLING DISTRIBUTIONS	2	Credits	
LINIT I. NODM	A L DISTRIBUTION	(4)	5 lectures)	
	AL DISTRIBUTION			
Mean, Median, M	lode, Standard deviation, Moment Generating function, Cumular	nt		
Generating functi	on, Moments & Cumulants (up to fourth order). Recurrence			
relation for centra	l moments, skewness & kurtosis, Mean absolute deviation.		15 Lecture	s
Distribution of lir	ear function of independent Normal variables. Fitting of Norma	1		
Distribution. Cen	tral Limit theorem for iid random variables.			
Log Normal Distr	ibution: Mean, variance, distribution of product of independent	log		
normal variables.				
UNII II: BIVAF	RIATE PROBABILITY DISTRIBUTIONS			
Joint Probability	mass function for Discrete random variables, Joint Probability			
density function f	or continuous random variables and properties. Marginal and			
conditional Distri	butions. Independence of Random Variables. Conditional		15 Lecture	s
Expectation & Va	riance. Regression Function. Coefficient of Correlation.			
Transformation of	f Random Variables and Jacobian of transformation.			
UNIT III: EXAC	CT SAMPLING DISTRIBUTIONS			
Chi Squara Distri	bution: Concept of degrees of freedom Mean Median Mode &			
Standard deviatio	n Moment generating function. Cumulant generating function			
Additive property	Distribution of the sum of squares of independent Standard		15 Lecture	s
Normal variables	Sampling distributions of sample mean and sample variance an	d		
their independence	e for a sample drawn from Normal distribution (without	u		
and mucpendence	e for a sample drawn from Normal distribution (without			

proof).Applications of Chi-Square: Confidence interval for the variance of a Normal population, Test of significance for specified value of variance of a Normal population. Test for goodness of fit, Test for independence of attributes, Yates' correction.

t-distribution: Derivation of p.d.f. of t ,Mean, Median, Mode & Standard deviation.. Asymptotic properties. Students's t, Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on independent samples with equal variances & dependent samples).

F-distribution: Mean, Mode & Standard deviation. Distribution of Reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with t-distribution, Chi-square distribution & Normal distribution. Applications of F .Confidence interval for ratio of variances of two independent Normal populations. Test for equality of variances of two independent Normal populations.

SEMESTER IV: PRACTICALS BASED ON COURSE SIUSSTA41

Normal Distribution
 Fitting of Normal distribution, Central Limit Theorem.
 Bivariate Probability Distributions.
 Transformation of bivariate continuous random variables.
 Chi Square distribution.
 t distribution.
 f distribution.
 Wes of R

REFERENCES:

- Goon A.M., Gupta M.K & Dasgupta B. (2013). An Outline of Statistical Theory. Vol. 1, Third Edition: The World Press Pvt. Ltd.
- Gupta S.C.& Kapoor V.K. (2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- Hoel P. G. (1966). Introduction to Mathematical Statistics, Fourth Edition : John Wiley & Sons Inc.
- Hogg R. V. & Tannis E. A. (1988). *Probability and Statistical Inference*, Third Edition: Collier McMillan Publishers.
- Hogg R. V. &Craig A.T. (2012) Introduction to Mathematical Statistics. Seventh Edition: Collier McMillan Publishers.
- Kapur J. N.& Saxena H.C. *Mathematical Statistics*, Fifteenth Edition : S. Chand & Company Ltd.
- 7. Medhi J. (2013). Statistical Methods: An Introductory Text. Second Edition: Wiley Eastern Ltd.

- Miller I., Miller M., Freund J.E. (1999) *John E. Freund's Mathematical Statistics*, Sixth Edition: Pearson Education Inc.
- 9. Mood A. M., Graybill F.A.& Boyes D. C. (2001). Introduction to the theory of Statistics. Third

Edition: McGraw-Hill Book Company.

PAPER II

- To design an experiment for specified objectives.
- To evaluate the data collected using ANOVA techniques.

Course Code	Title	Credits	
SIUSSTA42	ANALYSIS OF VARIANCE & DESIGN OF EXPERIMENTS	2 Credits (45 lectures)	
UNIT I: ANALY	ISIS OF VARIANCE		
Introduction, Coo	chran's Theorem (Statement only).		
One way classific	cation with equal & unequal observations per class, Two way		
classification wit	h one observation per cell.		
Mathematical Mo	odel, Assumptions, Expectation of various sum of squares,	15 Lectures	
F- test, Analysis	of variance table.		
Least square estin	nators of the parameters, Variance of the estimators, Estimation of		
treatment contras	ts, Standard Error and Confidence limits for elementary treatment		
contrasts.			
UNIT II: DESIG	SN OF EXPERIMENTS		
Experiment, Exp	erimental unit, Treatment, Yield, Block, Replicate, Experimental Error,		
Precision. Princip	oles of Design of Experiments: Replication, Randomization & Local		
Control.			
Efficiency of des	ign D1 with respect to design D2.		
Choice of size, sh	hape of plots & blocks in agricultural & non agricultural experiments.		
Completely Rand	omized Design (CRD) & Randomized Block Design (RBD):	15 Lectures	
Mathematical Mo	odel, Assumptions, Expectation of various sum of squares,		
F-test, Analysis of variance table, Advantages.			
Least square estin	nators of the parameters, Variance of the estimators, Estimation of		
treatment contrasts, Standard error and Confidence limits for elementary treatment			
contrasts. Efficiency of RBD relative to a CRD.			
Missing plot tech	nique for one missing observation in case of CRD and RBD.		

UNIT III: LATIN SQUARE DESIGN & FACTORIAL EXPERIMENTS:	
Latin Square Design: Mathematical Model, Assumptions, Expectation of various sum of	
squares, F-test, Analysis of variance table, Advantages. Least square estimators of the	
parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error	
and Confidence limits for elementary treatment contrasts. Efficiency of the design	
relative to RBD, CRD.	15 Lectures
Missing plot technique for one missing observation in case of LSD	
Factorial Experiments: Advantages. 2 ² , 2 ³ Experiments. Definition of Orthogonal	
Contrast, Calculation of Main & Interaction Effects. Yates' method. Analysis of 2 ² & 2 ³	
factorial Experiments.	

SEMESTER IV: PRACTICALS BASED ON COURSE SIUSSTA42

1. One way Analysis of Variance.
2. Two way Analysis of Variance.
3. Completely Randomized Design.
4. Randomized Block Design.
5. Latin Square Design.
6. Missing Observations in CRD, RBD & LSD.
7. Factorial Experiments.
8. Use of R

REFERENCES:

- 1. Cochran W.G.& Cox G.M.(1992). Experimental Designs, Second Edition: John Wiley and Sons.
- Das M.N.& Giri N.C. (1986). *Design and Analysis of Experiments*. Second Edition: New Age International (P) Limited.
- Federer W.T.(1955). *Experimental Design, Theory and Application*: Oxford & IBH Publishing Co. Pvt. Ltd.

- Gupta S.C.& Kapoor V. K. (2001) Fundamentals of Applied Statistics, Third Edition: Sultan Chand and Sons.
- 5. Kempthorne O.(1994). The Design and Analysis of Experiments: John Wiley and Sons.
- 6. Montgomery D.C.(2012). Design and Analysis of Experiments, Sixth Edition : John Wiley & Sons.
- 7. Winer B.J. (1962). Statistical Principles in Experimental Design : McGraw Hill Book Co.

PAPER III

- To understand planning and evaluation of project.
- To acquire skills in strategy planning and decision making.

Course Code	Title	Credits
		2 Credits
SIUSSTA43	OPERATIONS RESEARCH II	(45 lectures)
UNIT I: CPM	AND PERT	
Objective and	Outline of the techniques. Diagrammatic representation of	
activities in a p	15 Lectures	
Float times. De		
project schedul		
UNIT II: GAN	ME THEORY	
Definitions of	two person zero sum game, saddle point, value of the game,	
pure and mixed strategy, optimal solution of two person zero sum game, 15 Lecture		
dominance property, derivation of formulae for 2x2 game. Graphical solution		
of (2 x n) and (m x 2) game. Reduction of game theory to LPP.		

UNIT III: DECISION THEORY	
Decision making under uncertainty: Laplace criterion, Maximax (Minimin)	
criterion, Maximin (Minimax) criterion, Hurwitz α criterion, Minimax Regret	
criterion.	
Decision making under risk: Expected Monetary Value criterion, Expected	15 Lectures
Opportunity Loss criterion, Expected Payoff of Perfect Information (EPPI),	
Expected Value of Perfect Information (EVPI). Bayesian Decision rule for	
Posterior analysis.	
Decision tree analysis along with Posterior probabilities.	

SEMESTER IV: PRACTICALS BASED ON COURSE SIUSSTA43

1. Gantt chart and CPM
2. PERT
3. Project cost analysis
4. Updating
5. Game Theory I
6. Game Theory II

7. Decision Theory I

8. Decision Theory II

9. QM for windows

REFERENCES:

- Bronson R. (1997). Schaum Series book in Operations Research. Second edition: Tata McGraw Hill Publishing Company Ltd.
- 2. Kantiswaroop & Gupta M. (2004). Operations Research. Fourth Edition: S Chand & Sons.
- Sasieni M., Yaspan A.& Friedman L. (1959). Operations Research; Methods and Problems: John Wiley & Sons.
- Sharma J. K. (1989). *Mathematical Models in Operations Research:* Tata McGraw Hill Publishing Co. Ltd.
- 5. Sharma J.K. (2001). Quantitative Techniques for Managerial Decisions: MacMillan India Ltd.
- 6. Sharma S.D. Operations Research, Eleventh Edition: Kedar Nath Ram Nath & Company.
- Srinath L. S. (2001). PERT and CPM, Principles and Applications. Third Edition: East-West Press Pvt. Ltd.
- 8. Taha H. A. (2010). Operations Research. Ninth Edition: Prentice Hall of India.

EXAMINATION PATTERN

Internal Assessment of Theory per Course per Semester

- 1. Class Test
- 2. Project / Assignment / Presentation etc.

20 Marks. 20 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of 2 hours duration and 60 marks based on the three units shall be held for each course.

Pattern of Theory question paper:

There shall be four compulsory questions of 15 marks each (with Internal Option).

Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

Semester End Practical Examination per Course

1. Journal10 Marks.2. Practical Examination40 Marks.At the end of the semester, practical examination of 1 hour 30 minutes duration and 40 marks shall beheld for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III. Question 4 based on all three units.

SIES College of Arts, Science & Commerce (Autonomous) Department of Statistics

> Faculty: Science Program: B.Sc. Course: Statistics

Syllabus for T.Y.B.Sc. (Credit Based Semester and Grading System with effect from the academic year 2018–2019)

SEMESTER V THEORY

Title of Course	PROBABILITYAND DISTRIBUTION THEORY			
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	PROBABILITY I	1	
	II	PROBABILITY II	1	
SIUSSTA51	III	JOINT MOMENT GENERATING FUNCTION, TRINOMIAL AND MULTINOMIAL DISTRIBUTION	1	2.5
	IV	BIVARIATE NORMAL DISTRIBUTION	1	
Title of Course		THEORY OF ESTIMATION		
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	POINT ESTIMATION AND PROPERTIES OF ESTIMATOR	1	
PAPERII SHISSTA 52	II	METHODS OF ESTIMATION	1	2.5
510551A52	III	BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL	1	
	IV	LINEAR ESTIMATION	1	
Title of Course		BIOSTATISTICS		
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	EPIDEMIC MODELS	1	
DADED III	II	BIOASSAYS	1	2.5
SIUSSTA53	III	CLINICAL TRIALS	1	4.5
5105511105	IV	BIOEQUIVALENCE	1	
Title of Course	ELEMENTS OF ACTUARIAL SCIENCE			
Course Code	Unit	Topics	Lectures/ Week	Credits
PAPER IV SIUSSTA54	Ι	MORTALITY TABLES	1	
	II	COMPOUND INTEREST AND ANNUITIES CERTAIN	1	2.5
	III	LIFE ANNUITIES	1	1
	IV	ASSURANCE BENEFITS	1	1

PRACTICALS

Course Code	Practicals based on	Lectures/	Credits
		Week	
SIUSSTAP51	SIUSSTA51	4	
	SIUSSTA52	4	3
SIUSSTAP52	SIUSSTA53	4	3
	SIUSSTA54	4	

SEMESTER VI

THEORY

Title of Course	DISTRIBUTION THEORY AND STOCHASTIC PROCESSES			
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	ORDER STATISTICS	1	
	II	GENERATING FUNCTIONS	1	25
PAPER I	III	STOCHASTIC PROCESSES	1	2.5
510551A01	IV	QUEUING THEORY	1	
Title of Course		TESTING OF HYPOTHESES		
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	MOST POWERFUL TESTS	1	
SIUSSTA62	II	UNIFORMLY MOST POWERFUL & LIKELIHOOD RATIO TESTS	1	2.5
	III	SEQUENTIAL PROBABILITY RATIO TESTS	1	2.0
	IV	NON-PARAMETRIC TESTS	1	
Title of Course	OPERATIONS RESEARCH TECHNIQUES			
Course Code	Unit	Topics	Lectures/ Week	Credits
	Ι	INVENTORY CONTROL	1	
	II	REPLACEMENT	1	
PAPER III SIUSSTA63	III	SIMULATION	1	2.5
	IV	CAPITAL BUDGETING, SECURITIES MARKET, FUTURES & OPTIONS	1	
Title of Course	PREDICTIVE MODELLING AND INDUSTRIAL STATISTICS			
Course Code	Unit	Topics	Lectures/	Credits
			Week	
	I	LINEAR REGRESSION I	1	25
	II	LINEAR REGRESSION II	1	2.0

PAPER IV	III	CLASSIFICATION	1	
SIUSSTA64	IV	CONTROL CHARTS &	1	
		ACCEPTANCE SAMPLING	1	

PRACTICALS

Course Code	Practicals based on	Lectures/	Credits
		Week	
SIUSSTAP61	SIUSSTA61	4	
	SIUSSTA62	4	3
SIUSSTAP62	SIUSSTA63	4	3
	SIUSSTA64	4	

TYBSc SYLLABUS UNDER AUTONOMY

SEMESTER V PAPER I

- To acquire in-depth knowledge of probability theory.
- To understand significance of correlation using bivariate normal distribution.

Course Code	Title	Credits
SIUSSTA51	PROBABILITY AND DISTRIBUTION THEORY	2.5 Credits (60 lectures)
Unit I : PROBABI	LITY I	15 Lectures
Basic definitions: Ra	andom Experiment, Outcome, Event, Sample Space,	
Complementary, Mu	itually Exclusive, Exhaustive and Equally Likely Events.	
Mathematical, Statis		
Sub populations and Probabilities based of Ordered samples and Addition Theorem for		
		15 Lectures
Unit II :PROBABI	LITY II	
Theorems on Probability of realization of : At least one, Exactly m. At least m of N events $A_1, A_2, A_3, \dots A_N$.		
Matching and Guessing problems.		
Conditional Probability: Multiplication Theorem for two and three events.		
Independence of two and three events - complete and pair wise.		
roiya s um model f	Dayes meorem.	

Unit III: JOINT MOMENT GENERATING FUNCTION, TRINOMIAL AND	15 Lectures
MULTINOMIAL DISTRIBUTION	
Definition and properties of Moment Generating Function (MGF) of two random	
variables of discrete and continuous type. Necessary condition for independence of two	
random variables.	
Concept and definition of Multivariate MGF.	
Trinomial distribution: Definition of joint probability distribution of (X, Y). Joint moment	
generating function, moments μ_{rs} where r=0, 1, 2 and s=0, 1, 2.	
Marginal & Conditional distributions. Means & Variances.	
Correlation coefficient between (X, Y). Distribution of the Sum X+Y.	
Extension to Multinomial distribution with parameters $(n, p_1, p_2, \dots p_{k-1})$ where	
$p_1+p_2+\dots+p_{k-1}+p_k=1$. Expression for joint MGF. Derivation of: joint probability	
distribution of (X_i, X_j) . Conditional probability distribution of X_i given $X_j = x_j$	
Unit IV: Unit I : BIVARIATE NORMAL DISTRIBUTION	15 Lectures
Definition of joint probability distribution (X, Y). Joint Moment Generating function,	
moments μ_{rs} where r=0, 1, 2 and s=0, 1, 2. Marginal & Conditional distributions. Means	
& Variances. Correlation coefficient between the random variables. Necessary and	
sufficient condition for the independence of X and Y. Distribution of aX+bY, where 'a'	
and 'b' are constants.	
Distribution of sample correlation coefficient when $\rho = 0$.	
Testing the significance of a correlation coefficient.	
Fisher's z – transformation.	
Tests for H_0 : $\rho = \rho_0 \& H_0$: $\rho_1 = \rho_2$ Confidence interval for ρ .	

SEMESTER V: PRACTICALS BASED ON COURSE SIUSSTA51

1.	Probability-1
2.	Probability -2
3.	Probability -3
4.	Joint Moment Generating function
5.	Trinomial & Multinomial Distribution

- 6. Bivariate Normal Distribution
- 7. Tests for correlation and Interval estimation

REFERENCES

- 1. Biswas S.(1991). *Topics in Statistical Methodology*, First edition: Wiley Eastern Ltd.
- 2. Chandra T.K.& Chatterjee D.(2005). *A First Course in Probability*, Third Edition: Narosa Publishing House.
- 3. Feller W. (1968). *An introduction to probability theory and it's applications,* Volume 1, Third edition :Wiley Eastern Limited.
- 4. Gupta S C & Kapoor V K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons.
- 5. Hogg R V. & Craig A. T. (2012).*Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 6. Hogg R. V. & Tanis E.A..(2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 7. Kapur J. N.& Saxena H. C.(2010). *Mathematical Statistics*, Fifteenth edition: S. Chand and Company.
- 8. Mood A. M., Graybill F. A.& Boyes D. C. (1974).*Introduction to the theory of Statistics*, Third edition, McGraw- Hill Series.

PAPER II

- To learn methods of estimation and properties of estimators.
- To use Bayesian approach in estimation.

Course Code	Title	Credits
SHISSTA 52	THEORY OF ESTIMATION	2.5 Credits
510551752	<u>IIILORI OF ESTIMATION</u>	(60 lectures)
Unit I :POINT ESTIMATION AND PROPERTIES OF ESTIMATOR		15 Lectures
Notion of a parameter and parameter space. Problem of Estimation,		
Definitions of Stat	istic, Estimator and Estimate.	
Properties of a good estimator.		
Unbiasedness: Definition of an unbiased estimator, biased estimator, positive and		
negative bias, Resu		
Consistency: Definition, Condition for consistency		
Sufficiency: Definition, Neyman Factorization Theorem and Sufficient statistic for		
Exponential family of probability distributions.		
Relative efficiency of an estimator.		
Minimum variance unbiased estimator (MVUE), Uniqueness property of MVUE.		
Fisher information function, Cramer-Rao inequality, Cramer-Rao Lower Bound		
(CRLB), Definition		

Unit II :METHODS OF ESTIMATION	15 Lectures
Method of Maximum Likelihood Estimation (M.L.E.), Definition of likelihood as a	
function of unknown parameter, Properties of M.L.E.	
Method of Moments,	
Method of Minimum Chi-square and Modified Minimum Chi-square.	
Unit III: BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL	15 Lectures
Bayesian Estimation: Prior distribution, Posterior distribution, Loss function, Risk	
function, Bayes' solution under Squared Error Loss Function (SELF) and Absolute	
Error Loss function.	
Interval Estimation: Confidence Interval. Definition of pivotal quantity and its use	
in obtaining confidence limits. Confidence Intervals based on asymptotic property	
of M.L.E. Equidistant confidence interval for the parameters of standard	
distributions.	
Unit IV : LINEAR ESTIMATION	15 Lectures
Linear Regression Model $Y = \alpha + \beta X + e$ where e follows Independent N(0, σ^2).	
Maximum Likelihood and Least square Estimators of α , β , and σ^2 . Properties of the	
estimators. Confidence Intervals for α , β , and σ^2 . Testing Significance of the	
regression coefficient β . Gauss-Markoff Theorem for Full rank Model. Properties	
of the Estimator, Estimation of Linear function of parameters $l'\beta$. Mean and	
variance. Confidence Interval and Testing of significance of $l'\beta$.	

SEMESTER V: PRACTICALS BASED ON COURSE SIUSSTA52

- 1. Minimum Variance Unbiased Estimator
- 2, Method of Estimation -1
- 3. Method of Estimation -2
- 4. Bayes' Estimation
- 5. Confidence Interval
- 6. Linear Estimation
- 7. Use of R software

REFERENCES:

- 1. Arora S. & Bansi Lal (1989) New Mathematical Statistics: Satya Prakashan, New Delhi
- 2. Gupta S C & Kapoor V K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons
- 3. Hoel P.G.(1966). *Introduction to Mathematical Statistics*, Fourth Edition: John Wiley & Sons Inc.
- 4. Hogg R V. & Craig A. T. (2012).*Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 5. Hogg R. V.& Tannis E. A. (2014). *Probability and Statistical Inference*, Ninth Edition: Collier McMillan Publishers.
- 6. Kapur J. N.& Saxena H.C. (2010) *Mathematical Statistics*, Fifteenth Edition : S. Chand & Company Ltd.
- 7. Kshirsagar A.M.(1983) A course in Linear Models
- 8. Pawagi V.R.& Ranade S.A Statistical Methods Using R Software: Nirali Publication
- Rohatgi V.K.& Ehsanes Saleh A.K. Md.(2008). An introduction to Probability Theory and Mathematical Statistics, Second Edition: Wiley series in Probability and Statistics. Miller I., Miller M.& Freund J.E. (1999) John E. Freund's Mathematical Statistics, Sixth Edition: Pearson Education Inc.

PAPER III

- To appreciate role of Statistics in Biology.
- To understand need, ethics and norms of clinical trials.

Course Code	Title	Credits
SILISSTA 53	BIOSTATISTICS	2.5 Credits
S10551A55	<u>BIOSTATISTICS</u>	(60 lectures)
Unit I : EPIDEMIC MODELS		15 Lectures
The features of Epidemic spread. Definitions of various terms involved.		
Simple mathematical models for epidemics: Deterministic model with and without		
removals, Host Vector model, Carrier model.		
Chain binomial models. Reed - Frost and Greenwood models. Distribution of		
individual chains and total number of cases. Maximum likelihood estimator of 'p'		
and its asymptotic variance for households of sizes up to 4.		

Unit II: BIOASSAYS	15 Lectures
Meaning and scope of bioassays. Relative potency. Direct assays. Fieller's theorem.	
Quantal Response assays. Tolerance distribution. Median effective dose ED50 and	
LD50. Probit analysis.	
Indirect assays. Dose-response relationship .Condition of similarity and Monotony.	
Linearizing transformations. Parallel line assays. Symmetrical (2, 2) and (3, 3)	
parallel line assays. Validity tests using orthogonal contrasts. Point Estimate and	
Interval Estimate of Relative potency.	
Unit III: CLINICAL TRIALS	15 Lectures
Introduction to clinical trials: The need and ethics of clinical trials.	
Common terminology used in clinical trials. Over view of phases (I-IV)	
Study Protocol, Case record/Report form, Blinding (Single/Double)	
Randomized controlled (Placebo/Active controlled), Study Designs (Parallel, Cross	
Over).	
Types of Trials: Inferiority, Superiority and Equivalence, Multi-centric Trial.	
Inclusion/Exclusion Criteria. Statistical tools: Analysis of Parallel Design using	
Analysis of Variance.	
Concept of odds ratio. Sample size estimation.	
Unit IV: BIOEQUIVALENCE	15 Lectures
Definitions of Generic Drug product. Bioavailability, Bioequivalence,	
Pharmakokinetic (PK) parameters C _{max} , AUC _t , AUC _{0-∞} , T _{max} , K _{el} , T _{half} .	
Estimation of PK parameters using 'time vs. concentration' profiles.	
Designs in Bioequivalence: Parallel, Cross over (Concept only).	
Advantages of Crossover design over Parallel design.	
Analysis of Parallel design using logarithmic transformation (Summary statistics,	
ANOVA and 90% confidence interval).	
Confidence Interval approach to establish bioequivalence (80/125 rule).	

SEMESTER V: PRACTICALS BASED ON COURSE SIUSSTA53

1.	Epidemic models
2.	Direct Assays
3.	Quantal Response Assays
4.	Parallel line Assay
5.	Clinical Trials
6.	Bioequivalence

<u>REFERENCES</u>:

- 1. Bailey N.T.J. (1975). *The Mathematical theory of infectious diseases*, Second edition: Charles Griffin and Co. London.
- 2. Bolton S. & Bon C. (2009). Pharmaceutical Statistics, Fifth edition: Marcel Dekker Inc.
- 3. Das M.N & Giri N.C.(1986). Design and Analysis of Experiments, Second edition: Wiley Eastern
- 4. Finney D.J. (1964). *Statistical Methods in Biological Assays*, First edition: Charles Griffin and Co. London
- 5. Fleiss J.L. (1999). *The Design and Analysis of Clinical Experiments*. Second edition: Wiley and Sons
- 6. Friedman L. M., Furburg C. D., Demets D. L.(2015). *Fundamentals of Clinical Trials*. Fifth edition: Springer Verlag.
- 7. Shein-Chung-Chow:(2008)*Design and Analysis of Bioavailability & Bioequivalence studies*, Third Edition: Chapman & Hall/CRC Biostatistics series.
- 8. Wayne D. W. (2013). *Biostatistics- A Foundation for Analysis in the Health Sciences,* Tenth Edition: Wiley Series in Probability and Statistics.
- 9. Zar Jerrold H. (2013). *Biostatistical Analysis*, Fifth edition: Pearson's education.

PAPER IV

- To comprehend Vital statistics
- To study formulation of policies in insurance industry

Course Code	Title	Credits
SIUSSTA54	ELEMENTS OF ACTUARIALSCIENCE	2.5 Credits (60 lectures)

Unit I : MORTALITY TABLES	15 Lectures
Vital statistics: Meaning, Uses, Methods of obtaining Vital statistics. Various	
mortality functions. Probabilities of living and dying. The force of mortality.	
Estimation of μ_x from the mortality table. Central Mortality Rate. Laws of	
mortality: Gompertz's and Makeham's first law. Select, Ultimate and Aggregate	
mortality tables. Stationary and stable population. Expectation of life and	
Average life at death.	
Unit II: COMPOUND INTEREST AND ANNUITIES CERTAIN	15 Lectures
Accumulated value and present value, nominal and effective rates of interest.	
Varying rates of interest. Equation of value. Equated time of payment.	
Present and accumulated values of annuity certain (immediate and due) with and	
without deferment period.	
Present value for perpetuity (immediate and due) with and without deferment	
period.	
Present and accumulated values of increasing annuity, increasing annuity	
when successive installments form arithmetic progression, annuity with	
frequency different from that with which interest is convertible.	
Redemption of loan.	
Unit III: LIFE ANNUITIES	15 Lectures
Present value in terms of commutation functions of Life annuities and Temporary	
life annuities (immediate and due) with and without deferment period. Present	
values of variable, increasing life annuities and increasing Temporary life	
annuities (immediate and due).	
Unit IV: ASSURANCE BENEFITS	15 Lectures
Present value of Assurance benefits in terms of commutation functions of :	
Pure endowment assurance, Temporary assurance, Endowment assurance,	
Whole life assurance, Special endowment assurance, Deferred temporary	
assurance	
Net premiums: Net level annual premiums (including limited period of payment)	
for various assurance plans.	
Office premiums.	

SEMESTER V: PRACTICALS BASED ON COURSE SIUSSTA54

1.	Mortality tables 1
2.	Mortality tables 2

3.	Annuities 1
4.	Annuities 2
5.	Life annuities
6.	Assurance benefits

REFERENCES:

- 1. Dixit S.P., Modi C.S.& Joshi R.V.(1991). *Mathematical Basis of Life Assurance*, First edition (Reprint): Insurance Institute of India.
- 2. Gupta S. C. &. Kapoor V. K. (2014). *Fundamentals of Applied Statistics*, Fourth edition: Sultan Chand & Sons.
- 3. Neill A. (1977). Life Contingencies, First edition: Heineman educational books, London

TYBSc SYLLABUS UNDER AUTONOMY

SEMESTER VI PAPER I

- To study order statistics and generating functions useful in research
- To learn stochastic processes to understand its application in queuing theory

Course Code	Title	Credits
SIUSSTA61	DISTRIBUTION THEORY AND STOCHASTIC	2.5 Credits
	PROCESSES	(60 lectures)
Unit I : ORDER STATISTICS		15 Lectures
Definition of Order Statistics based on a random sample.		
Derivation of: Cumulative distribution function of r th order statistic, Probability		
density functions of the r th order statistic, Joint Probability density function of the		
r th and the s th order statistic (r <s), all="" density="" function="" joint="" n<="" of="" probability="" td=""></s),>		
ordered statistics, Probability density function of Median (in the case of odd		
sample sizes) and Range.		

Unit II : GENERATING FUNCTIONS	15 Lectures
Definitions of generating function and probability generating function. Expression	
for mean and variance in terms of generating functions. Definition of a	
convolution of two or more sequences. Generating function of a convolution.	
Generating functions of the standard discrete distributions. Relation between:	
Bernoulli and Binomial distributions, Geometric and Negative Binomial	
distributions in terms of convolutions.	
Unit III: STOCHASTIC PROCESSES	15 Lectures
Definition of stochastic process. Postulates and difference differential equations	
for: Pure birth process, Poisson process with initially 'a' members, for a =0 and	
a >0, Yule-Furry process, Pure death process, Death process with $\mu_n = \mu$, Death	
process with $\mu_n = n\mu$, Birth and death process, Linear growth model.	
Derivation of P_n (t), mean and variance where ever applicable.	
Unit IV: QUEUING THEORY	15 Lectures
Basic elements of the Queuing model.	
Roles of the Poisson and Exponential distributions.	
Derivation of Steady state probabilities for birth and death process. Steady state	
probabilities and various average characteristics for the following models:	
$(M/M/1) : (GD/\infty/\infty), (M/M/1) : (GD/N/\infty), (M/M/c) : (GD/\infty/\infty),$	
$(M/M/c)$: $(GD/ N /\infty)$, $(M/M/\infty)$: $(GD/ \infty /\infty)$, $(M/M/R)$: $(GD/ k /k)$	

SEMESTER VI: PRACTICALS BASED ON COURSE SIUSSTA61

1.	Order Statistics – 1
2.	Order statistics – 2
3.	Generating Function
4.	Stochastic Processes
5.	Queuing Theory -1
6.	Queuing Theory -2

<u>REFERENCES</u>:

- 1. Biswas S.(1991). Topics in Statistical Methodology, First edition: Wiley Eastern Ltd.
- 2. Feller W. (1968). *An introduction to probability theory and it's applications,* Volume 1, Third edition :Wiley Eastern Limited.
- 3. Gupta S. C.& Kapoor V. K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh Edition, Sultan Chand & Sons.

- 4. Hogg R V. & Craig A. T. (2012).*Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 5. Hogg R. V. & Tanis E.A. (2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 6. Kapur J. N.& Saxena H. C.(2010). *Mathematical Statistics*, Fifteenth edition: S. Chand and company.
- 7. Medhi J: (2013). Stochastic Processes, Second edition: Wiley Eastern Ltd.
- 8. Mood A. M., Graybill F. A.& Boyes D. C. (1974).*Introduction to the theory of Statistics*, Third edition, McGraw- Hill Series.
- 9. Taha H.A.(2010). *Operations Research: An introduction*, Ninth edition: Prentice Hall of India Pvt. Ltd.

PAPER II

- To study testing statistical hypotheses for fixed and variable sample sizes
- To understand applications non parametric tests used in social sciences

Course Code	Title	Credits
SIUSSTA62 <u>TESTING OF HYPOTHESES</u>	TESTING OF HYPOTHESES	2.5 Credits
		(60 lectures)
Unit I : MOST	POWERFUL TESTS	15 Lectures
Problem of testing of hypothesis.		
Definitions of Simple hypothesis, Composite hypothesis, Null Hypothesis,		
Alternative Hypothesis, Test of hypothesis, Critical region, Type I and Type II		
errors, Level of significance, p-value, size of the test, Power of the test, Power		
function of a test, Power curve.		
Definition of most powerful test of size α for a simple hypothesis against a simple		
alternative hypo	othesis. Neyman-Pearson fundamental lemma.	

Unit II : UNIFORMLY MOST POWERFUL & LIKELIHOOD RATIO TESTS	15 Lectures
Definition, Existence and Construction of uniformly most powerful (UMP) test.	
Likelihood ratio principle. Definition of test statistic and its asymptotic	
distribution (statement only).	
Unit III: SEQUENTIAL PROBABILITY RATIO TESTS	15 Lectures
Sequential test procedure for testing a simple null hypothesis against a simple	
alternative hypothesis. Its comparison with fixed sample size test procedure.	
Definition of Wald's SPRT of strength (α , β).	
Unit IV: NON-PARAMETRIC TESTS	15 Lectures
Need for non parametric tests. Distinction between a parametric and a non	
parametric test .Concept of a distribution free statistic. Single sample and two	
sample Nonparametric tests: Sign test, Wilcoxon's signed rank test, Run test,	
Mann-Whitney test, Median test, Kruskal Wallis test, Friedman test, Fisher's	
exact test.	
Assumptions, justification of the test procedure for small & large samples.	

SEMESTER VI: PRACTICALS BASED ON COURSE SIUSSTA62

- 1. Testing of Hypothesis 1
- 2. Testing of Hypothesis 2

3. SPRT

- 4. Non Parametric test 1
- 5. Non Parametric test 2
- 6. Use of R.

<u>REFERENCES</u>:

- 1. Arora S. & Lal B. (1989) *New Mathematical Statistics*: Satya Prakashan, New Delhi
- 2. Biswas S.(1991). *Topics in Statistical Methodology* First edition: Wiley Eastern Ltd.
- 3. Daniel W.W..(2000) *Applied Non Parametric Statistics* Second edition Boston-Houghton Mifflin Company
- 4. Gupta S C & Kapoor V K. (2014). *Fundamentals of Mathematical Statistics*, Eleventh edition, Sultan Chand & Sons.
- 5. Hogg R V. & Craig A. T. (2012).*Introduction to Mathematical Statistics*, Seventh edition: Pearson Education (Singapore) Pvt. Ltd.
- 6. Hogg R. V. & Tanis E.A. .(2014). *Probability and Statistical Inference*, Ninth edition: McMillan Publishing Company
- 7. Lehmann, E. L.(2008). *Testing of Statistical Hypothesis*, Third edition: Wiley &sons
- 8. Pawagi V.R.& Ranade S.A. *Statistical Methods Using R Software:*Nirali Publication
- 9. Rao, C. R. (2001). *Linear Statistical Inference*, Second edition: Wiley Series in Probability & Statistics
- 10. Siegal S., Castellan N. J. (1988). *Non Parametric Statistics for Behavioral Science*, Second edition : Mc Graw Hill Publishing Co.
- 11. Wald A. (1947). *Sequential Analysis* . First edition: John Wiley & Sons , New York

PAPER III

- To comprehend knowledge of industry problems such as inventory, replacement
- To understand use of statistics in investment analysis

Course Code	Title	Credits
SIUSSTA63 <u>OPERATIONS RESEARCH TECHNIQUES</u>	OPERATIONS RESEARCH TECHNIQUES	2.5 Credits
	OI EKATIONS RESEARCH TECHNIQUES	(60 lectures)
Unit I : INVENTOR	Y CONTROL	15 Lectures
Introduction to Invent	tory Problem	
Deterministic Models: Single item static EOQ models for Constant rate of demand with		
instantaneous replenishment, with and without shortages. Constant rate of demand with		
uniform rate of replenishment, with and without shortages. Constant rate of demand with		
instantaneous replenishment without shortages, with at most two price breaks. Price break		
model.		
Probabilistic models: Single period with Instantaneous demand (discrete and continuous)		
without setup cost. U	niform demand (discrete and continuous) without set up cost.	

Unit II: REPLACEMENT	15 Lectures
Replacement of items that deteriorate with time and value of money remains constant &	
changes with time. Replacement of items that fail completely: Individual replacement and	
Group replacement policies.	
Unit III :SIMULATION	15 Lectures
Scope of simulation applications. Types of simulation. Monte Carlo Technique of	
Simulation. Elements of discrete event simulation. Generation of random numbers. Sampling	
from probability distribution. Inverse method. Generation of random observations from	
standard distributions. Simulation techniques applied to inventory and Queuing models.	
Unit IV: CAPITAL BUDGETING, SECURITIES MARKET, FUTURES & OPTIONS	15 Lectures
Capital budgeting: Payback Method, Net present value method, Internal Rate of Return	
Method. Methods of incorporating risk into capital budgeting : Certainty equivalent	
approach, Risk adjusted discount rates, Statistical distribution approach	
Securities Market: Stock market, share, face value, market value, dividend,	
equity share, preferential share, bonus and right shares. Initial Public offer, Earning per	
share, Price earning ratio index, Nifty, Beta value.	
Options terminology: Index option, Stock option, American option, European option. Strike	
price, Expiry date, Call option, Put option, Buyer of an option, Writer	
of an option.	
Futures & Options: Introduction to F & O market. Difference between Forward and	
Futures contracts. Factors influencing the market. Hedging, Arbitrage, Open interest.	
Concept of Mean Reversion theory, Pair trade.	

SEMESTER VI : PRACTICALS BASED ON COURSE SIUSSTA63

1.	Inventory 1
2.	Inventory 2
3.	Replacement
4.	Simulation
5.	Capital Budgeting
6.	Securities Market
7.	Futures & Options

<u>REFERENCES</u>:

- 1. Bannerjee B. : *Operation Research Techniques for Management*, First edition, Business Books
- 2. Bronson R. (1997). *Schaum Series book in Operations Research,* Second edition: Tata McGraw Hill Publishing Company Ltd.
- 3. Ganapathy Vidyamurthi (2004). Pairs Trading Quantitative Methods and Analysis, John
- 4. Hull John C. (2010). *Futures, Options, and other derivatives*, Seventh edition: Prentice Hall
- 5. Hull John C. (2017). *Fundamentals of Futures and Options Markets*, Global Edition, Eighth Edition: Pearson Education Limited
- 6. Kantiswaroop & Gupta M. (2010). *Operations Research*, Twelfth Edition: Sultan Chand & Sons
- 7. Prasanna Chandra. (2014). *Fundamentals of Financial Management*, Sixth Edition, McGraw Hill Education (India) Private Limited.
- 8. Sharma J. K. (2013). *Operations Research theory and applications*, Fifth edition : Macmillan India Ltd.
- 9. Sharma J.K. (2010). *Quantitative Techniques for Managerial Decisions*: MacMillan India Ltd.
- 10. Sharma S.D. Operations Research, Eleventh Edition: Kedar Nath Ram Nath & Co.
- 11. Tim Lieu. Xin Li. *Optimal Mean Reversion Trading Mathematical Analysis and Practical Applications*, World Scientific.
- 12. Vora N. D. (2015). *Quantitative Techniques in Management*, Fourth edition: McGraw Hill Co.

Wiley & Sons, Inc.

PAPER IV

- To comprehend modelling techniques used in forecasting
- To study the techniques used to check and control quality of the product

Course Code	Title	Credits
	PREDICTIVE MODELLING AND INDUSTRIAL	2.5 Credits
SIUSSTA64	STATISTICS	(60 lectures)
Unit I: LINEAR Linear regression model, Derivation (for one and two e (without proof). C Procedure of testin coefficients, Signi explanatory variat Unit II: LINEAR Autocorrelation: C Least Square (GL Heteroscedasticity Godfrey test. Weig Multicollinearity: Pairwise Correlati Consequences of u and multicollinear Multiple Linear R	REGRESSION I model with one or more explanatory variables. Assumptions of the of Ordinary Least Square (OLS) estimators of regression coefficients, xplanatory variables models). Properties of least square estimators oefficient of determination R ² and adjusted R ² . ag : Overall significance of the model, Significance of individual ficance of incremental contribution of explanatory variable for two oles model. Confidence intervals for the regression coefficients. REGRESSION II Concept, Detection using Run Test, Durbin Watson Test, Generalized S) method. : Detection using Spearman's Rank correlation test, Breusch-Pagan- ghted Least Square (WLS) estimators Detection using R square & t ratios, Variance Inflation Factor (VIF), on between regressors, using OLS estimators in presence of autocorrelation, heteroscedasticity ity. egression with Qualitative Independent Variable.	15 Lectures 15 Lectures
Unit III: CLASS Logistic Regression Model, Estimation Hosmer-Lemeshaw Concept of Multin K-nearest-neighbor	FICATION on Models: Introduction to Binary Logistic Regression, Statistical of Parameters using MLE, Odds Ratio, w Test for goodness of fit, Classification Table. omial and ordinal logistic regression. r (kNN) Algorithm, Weighted kNN, Naïve Bayes.	15 Lectures
Unit IV: CONTR Principles of contr Chart. Exponentia (CUSUM) control c-chart with varial Tolerance Limits, Acceptance sampl LTPD, ASN, ATI function and OC control Introduction to Size	OL CHARTS & ACCEPTANCE SAMPLING : ol. Process quality control of variables. Xbar and R, Xbar and Sigma lly weighted moving average (EWMA) control charts, Cumulative Sum chart, Process quality control of attributes : p, c, np charts. P-chart and ble sample size. Setting up standards for future use. Concept of Natural Specification Limits and Detection of shift. ing plan- Single Sampling Plans: OC function and OC curves. AQL, AOQ, Consumer's risk, Producer's risk. Double Sampling Plan: OC urves.	15 Lectures

SEMESTER VI : PRACTICALS BASED ON COURSE SIUSSTA64

Linear regression model 1
 Linear regression model 2
 Logistic Regression
 kNN and Naïve Bayes
 Control Charts
 Acceptance Sampling
 Use of R

<u>REFERENCES</u>:

- 1. Burr J. T.(2004). *Elementary Statistical Quality Control*, Second Edition ,CRC Press: Taylor & Francis Group.
- 2. Duncan A.J. (1965). Quality Control & Industrial Statistics, Third Edition
- 3. E.L. Grant. (1988). Statistical Quality Control, Second edition: McGraw Hill.
- 4. Greene W. (2017). *Econometric Analysis*, Eighth edition: McMillan Publishing Company.
- 5. Gujrathi D.N., Porter D.& Gunasekar S. (2017). *Basic Econometrics*, Fifth edition : McGraw-Hill Co.
- Hansen B. L., (1973), *Quality Control: Theory and Applications:* Prentice Hall of India Pvt. Ltd
- 7. Hastie, R. Tibshirani & J. Friedman. (2009) *The Elements of Statistical Learning, Data Mining, Inference and Prediction,*: Springer Series in Statistics.
- 8. Hosmer D. W., Lemeshow Jr.& Sturdivant S, R. X.(2013). *Applied Logistic Regression*: John Wiley & Sons,
- 9. Mann N.R., Schafer R.E.& Singapurwalla N.D.(1974). *Methods for Statistical Analysis of Reliability and Life Data*, First edition: John Wiley & Sons.
- 10. Montgomery D., (2009) *Statistical Quality Control*, Sixth Edition : Arizona State University. John Wiley & Sons, Inc.

EXAMINATION PATTERN

Internal Assessment of Theory per Course per Semester

1. Class Test	20 Marks.
2. Project / Assignment / Presentation etc.	20 Marks.

Semester End Theory Examination per Course

At the end of the semester, examination of two hours duration and 60 marks based on the four units shall be held for each course.

Pattern of Theory question paper :

There shall be four compulsory questions of 15 marks each (with Internal Option).

Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III Question 4 based on Unit IV.

Semester End Practical Examination per Course

1. Journal	5 Marks.
2. Viva Voce	5 Marks.
3. Practical Examination	40 Marks.

At the end of the semester, examination of 1hour 30 minutes duration and 40 marks shall be held for each course.

Pattern of Practical question paper:

There shall be four compulsory questions of 10 marks each (with Internal Option). Question 1 based on Unit I, Question 2 based on Unit II, Question 3 based on Unit III, Question 4 based on Unit IV.