

RISE WITH EDUCATION

Sion (West), Mumbai – 400022.

(Autonomous)

Faculty: Science Program: B.Sc.

Subject: MICROBIOLOGY

Academic Year: 2018 – 2019

F.Y.B.Sc

Credit Based Semester and Grading Syllabi approved by Ad-hoc Board of Studies in Microbiology to be brought into effect from June 2018.

PREAMBLE

With the introduction of Autonomy by the S.I.E.S. College of Arts, Science and Commerce under the University of Mumbai; from the academic year 2018-19; the syllabus for the F.Y.B.Sc Microbiology has been drafted to cover the many aspects of the subject.

The syllabus has been planned to cover basic techniques of Microbiology and an introduction to newer advanced techniques which will be dealt in detail in the second and third year of the course. The syllabus is also designed as per the norms of the CBGS pattern which consists of two semesters per academic year.

The students will be introduced to validation and calibration in order to prepare them for industry work. Study of living forms needs a basic understanding of Biochemistry and Genetics. These two fundamental topics will be taught in the First year at a basic level and will cover advanced aspects in the next two years of the course. Hence the module of Macromolecules and Genetics has been introduced in the syllabus.

The aim of the course is to prepare the students over three years so that they are competent to think independently and be trained for a career in research or industry.

	SEMESTER I	
Course Code	Title	Credits
Course code SIUSMIC11	FUNDAMENTALS OF MICROBIOLOGY	2 Credits
		(45 lectures)
Unit-I	History, Introduction and Scope Of Microbiology	15 lectures.
	Prokaryotic Cell Structure,	
Unit-II	Genetics and Biotechnology	15 lectures.
Unit-III	Nutrition and Cultivation	15 lectures.
Course code SIUSMIC12	BASICSOF MICROBIOLOGY I	2 Credits (45 lectures
Unit-I	Microscopy and Staining	15 lectures.
Unit-II	Eukaryotic Cell Structure	15 lectures.
Unit-III	Control of Microorganisms	15 lectures.
SIUSMICPI	PRACTICALS	2 Credits
	SECTION-1 FUNDAMENTALS OF MICROBIOLOGY. (Practicals Based On Unit-I,II and III Of SIUSMIC11	1 Credit (45 lectures
	SECTION-2 BASICS OF MICROBIOLOGY I (Practicals Based On Unit-I,II and III Of SIUSMIC12	1 Credit (45 Lectures)

	SEMESTER II	
Course code SIUSMIC21	BASICS OF MICROBIOLOGY II	2 Credits (45 Lectures)
Unit-I	Study Of Different Groups Of Microbes-I	15 lectures.
Unit-II	Study Of Different Groups Of Microbes-II	15 lectures.
Unit-III	Microbial Interactions	15 lectures.
Course code SIUSMIC22	EXPLORING MICROBIOLOGY.	2 Credits (45 Lectures)
Unit-I	Microbial growth	15 lectures.
Unit-II	Biomolecules	15 lectures.
Unit-III	Microbes and human health	15 lectures.
SIUSMICPII	PRACTICALS	2 Credits
	SECTION-1 BASICS OF MICROBIOLOGY II (Practicals Based On Unit-I,II and III of SIUSMIC21)	1 Credit (45Lectures)
	SECTION-2 EXPLORING MICROBIOLOGY. (Practicals Based On Unit-I,II and III of SIUSMIC22)	1 Credit (45Lectures)

Learning objectives

The syllabus is drafted with the following objectives -

- To introduce the subject of Microbiology which is not taught at the junior college
- To teach them Microbial techniques, biosafety methods and analytical methods
- To train the students for projects and assignments so that they can do independent study
- To prepare the student for advance studies in the subject of Microbiology

Expected outcome

The students after three years of the course in Microbiology will be well trained for careers in

- Pharmaceutical industry
- Research Institutes
- Clinical Research work
- Environmental monitoring
- Quality assurance

F.Y.B.Sc. MICROBIOLOGY SYLLABUS

SEMESTER I

Course code SIUSMIC11	PAPER I	
	FUNDAMENTALS OF MICROBIOLOGY	45 LECTURES 2 CREDITS
UNIT	TOPIC	LECTURES
Unit I	 1.Historical aspects of Microbiology and Prokaryotic Cell structure 1.1History and scope of Microbiology (3L) a. Golden Age of Microbiology-Koch's Postulates, Medical Microbiology, Immunology, industrial microbiology and microbial ecology b. Future of microbiology 1.2 Prokaryotic Cell structure and Function (12L) a. Cell wall b. Cell membrane c. Components external to cell wall-Capsule, Slime layer d. Flagella, Pili, Fimbriae e. Cytoplasmic matrix-Inclusion bodies, magnetosomes, 	15
	ribosomes, gas vesicles	
	f. Bacterial endospores and their formation	
Unit II	 2.Genetics and Biotechnology 2.1. Genetics (7L) DNA as genetic material; Forms of DNA;Types of RNA; Griffith, Avery andMcCleoad, Hershey and Chase experiment Watson and Crick Model 2.2 Nucleic acids: (3L) Nitrogenous bases- Purines, Pyrimidines Pentoses-Ribose, Deoxyribose Nomenclature of Nucleosides and nucleotides, polynucleotide chain to show bonding between nucleotides (Phosphodiester bonds) Basic structure of RNA and DNA 2.3. Biotechnology (5L) a. Introduction Biotechnology as an interdisciplinary science b. Energy and Biotechnology –Biofuels c. Biotechnology and Health care –Diagnosis and treatment d. Bio fertilizer, Bio pesticide and Vermicomposting e. Bioleaching, Biosensors f. Biosafety – introduction 	15
UnitIII	3.1: Nutrition and Cultivation (10L) a.Nutritional requirements – Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulfur and growth factors.	15

 b.Nutritional types of microorganisms c. Ingredients and Types of Culture media with examples d. Physical conditions required for growth. 3.2. Isolation and Preservation of Cultures (5L) a.Isolation of microorganisms and pure culture techniques b. Study of cultural characteristics
b. Study of cultural characteristicsc. Preservation of microorganisms
d. Culture Collection Centers

Course code SIUSMIC12	PAPER II	
5105111012	BASICS OF MICROBIOLOGY I	45 LECTURES 2 CREDITS
UNIT	TOPIC	LECTURES/SEM
Unit I	 1.1Microscopy (8L) a. History of microscopy b. Optical spectrum, Lenses and mirrors c. Simple and compound light microscope d. Dark field Microscopy e. Phase contrast Microscopy f. Electron microscopy-TEM, SEM 1.2 Staining and Contrast enhancement techniques (7L) a. Dyes and stains: Types, Physicochemical basis, Fixatives, Mordants, Decolorizers b. Simple and differential staining c. Special staining (Cell wall, Capsule, Lipid granules, Spores, Metachromatic granules and Flagella) 	15
Unit II	 Eukaryotic Cell Structure: a. Overview of Eukaryotic cell structure b. plasma membrane Structure c. Cytoplasmic matrix, microfilaments, intermediate filaments, and microtubules d. Organelles of the Biosynthetic-secretory and endocytic Pathways –Endoplasmic reticulum and Golgi apparatus Definitions of Lysosome, Endocytosis, Phagocytosis, Autophagy, Proteasome e. Eukaryotic ribosomes f. Mitochondria g. Chloroplasts h. Nucleus –Nuclear Structure i. External Cell Coverings: Cilia And Flagella j. Comparison of Prokaryotic And Eukaryotic Cells 	15

Unit III	3.1. Control of Microorganisms (3L)	15
	a. Definitions of frequently used terms	
	b. Rate of microbial death.	
	c. Factors affecting the effectiveness of antimicrobial	
	agents	
	d. Properties of an ideal disinfectant	
	3.2. Physical methods of microbial control (5L)	
	a. Dry and moist heat – mechanisms, instruments used	
	and their operations	
	b. Electromagnetic radiations – Ionizing radiations,	
	mechanisms -advantages and disadvantages	
	c. Bacteria proof filters	
	d. Low temperature	
	e. Osmotic pressure	
	f. Desiccation	
	3.3. Chemical methods of microbial control (5L) -	
	mechanism advantages and disadvantages (if any)	
	applications.	
	a. Phenolics	
	b. Alcohols	
	c. Heavy metals and their compounds	
	d. Halogens	
	e. Quaternary ammonium compounds	
	f. Halogens	
	g. Dyes	
	h. Surfaces active agents/Detergents	
	i. Aldehydes	
	j. Peroxygens	
	k. Sterilizing gases	
	1.Chemotherapeutic agents - List types of agents active	
	against various groups and mention the site of	
	action(Detailed mode of action not to be done)	
	3.4. Evaluation of disinfectant (2L) –Tube dilution and	
	Agar plate techniques, Phenol coefficient, Tissue toxicity	
	index	

SEMESTER II

Course code SIUSMIC21	PAPER I	
	BASICS OF MICROBIOLOGY II	45 LECTURES 2 CREDITS
UNIT	TOPIC	LECTURES
Unit I	 Study of Different Groups of Microbes (I) : 1.1Viruses: (7L)	15
Unit II	 2. Study Of Different Groups Of Microbes (II): 2.1 Protozoa (4L) Major Categories of Protozoa Based on motility, reproduction. Medically important Protozoa. Life cycle of <i>Entamoeba</i> 2.2 Algae (5L) Characteristicsof algae: morphology, Pigments, reproduction, Cultivation of algae. Major groups of Algae – an overview.Biological,Medical and economic importance of Algae. Differences between Algae and Cyanobacteria 2.3 Yeasts and Molds (5L) Characteristics: structure, Reproduction.Cultivation of Yeasts and Molds. Major fungal divisions- overview. Life cycle of yeast, Biological and economic importance 2.4 Slime molds and Myxomycetes(1L) 	15

Unit III	3.Microbial interactions (15L)	15
	3.1 Types of Microbial Interactions (4L)	
	Mutualism, Cooperation, Commensalism, Predation	
	Parasitism, Amensalism, Competition	
	3.2 Microbial associations with vascular plants (4L)	
	a) Phyllosphere and Rhizosphere	
	c) Mycorrhizae	
	d) Nitrogen fixation : Rhizobia, Actinorrhizae, Stem	
	Nodulating Rhizobia	
	e) Fungal and Bacterial endophytes	
	3.3 Human Microbe Interactions. (7L)	
	a) Normal flora of the human body : Skin, Nose and	
	Nasopharynx, Oropharynx, Respiratory tract, Eye,	
	External ear, Mouth, Stomach, Small intestine, Large	
	intestine, Genitourinary tract	
	b) Relationship between microbiota and the host	
	c) Gnotobiotic animals	

	PAPER II	
Course code		
SIUSMIC22	EXPLORING MICROBIOLOGY	45 LECTURES
	EAFLORING MICKODIOLOGY	45 LECTURES 2 CREDITS
UNIT	ТОРІС	LECTURES
Unit I	1. Microbial growth (15L)	15
	1.1. Definition of growth, Mathematical Expression, Growth	
	curve (2L)	
	1.2. Measurement of growth (7L)	
	a. Direct microscopic count - Breed's count, Petroff -	
	Hausser counting chamber- Haemocytometer	
	b. Viable count – Spread plate and Pour plate technique	
	c. Measurements of cell constituents	
	d. Turbidity measurements – Nephelometer and	
	spectrophotometer techniques	
	1.3 Types of growth(3L)	
	Synchronous growth, Continuous growth (Chemostat and	
	Turbidostat)	
	1.4. Influence of environmental factors on growth.(3L)	
	a. Microbial growth in natural environment	
	b. Diauxic growth- concept and example	

Unit II	2. Biomolecules	15
	2.1 Water- Structure, properties in brief (3L)	15
	2.2. Chemical foundation: (2L)	
	a. Biomolecules as compounds of carbon with a variety of	
	functional groups	
	C I	
	b. Macromolecules as the major constituents of cells	
	d. Configuration and Conformation with definitions and	
	suitable examples only	
	e. Types of Stereoisomers and importance of stereoisomerism	
	in biology	
	f. Types of bonds and their importance: Electrovalence,	
	covalent, ester, phosphodiester, thioester, peptide, glycosidic	
	2.3 Carbohydrates: (3L)	
	Definition, Classification, Biological role, Monosaccharides,	
	oligosaccharides (maltose, cellobiose, sucrose, lactose) and	
	polysaccharide (starch, glycogen, peptidogycan, cellulose)	
	2.4 Lipids: (3L)	
	Fatty acids as basic component of lipids and their	
	classification, nomenclature, storage lipids and structural	
	lipids	
	Types of lipids with general structure of each and mention	
	examples	
	on ampios	
	2.5 Amino acids, proteins and enzymes: (4L)	
	General structure and features of amino acids (emphasis on	
	amphoteric nature) Classification by R-group(<i>no structures</i>),	
	Uncommon amino acids and their functions	
	Peptides and proteins- Definition and general features and	
	examples with biological role	
	Primary, secondary, tertiary, quaternary structures of	
	proteins- Brief outline	15
Unit III	3. Microbes and human health	15
Unit III	3.1 Difference between infection and disease. (2L)	
	Important terminology: Primary infection, secondary	
	infection. Contagious infection, occupational disorder,	
	clinical infection, subclinical infection, Zoonosis, genetic	
	disorder, vector borne infection	
	3.2 Factors affecting infection: (3L) Microbial factors:	
	adherence, invasion, role of virulence factors in invasion,	
	colonization and its effects. Host factors: natural resistance,	
	species resistance, racial resistance	

3.3 Individual resistance : (3L) Factors influencing individual resistance: Age, nutrition, personal hygiene, stress, hormones, Addiction to drugs/ alcohol. Interaction between Microbes and host is dynamic. Types of immunity- active, passive, racial, species	
 3.4 Host defense against infection: Overview (7L) i) First line of Defense: skin, respiratory tract, gastrointestinal tract, genitourinary tract, eyes ii) Second line of defense: Biological barriers: Phagocytosis, Inflammation iii) Third line of defense: Brief introduction to antibody 	

REFERENCES FOR PAPER I AND II

- Advances in Biotechnology S. N. Jogdand ,6th Edition revised, Himalaya Publishing House, 2007
- Brock Biology of Microorganisms 11th Michael T.MadiganandJ.M.Martin , Ed. International edition ,2006, Pearson Prentice Hall.
- Foundations in Microbiology International 2002 edition, Kathleen Park Talaroand Arthur Talaro McGraw Hill
- Fundamental Principles of Bacteriology, A.J. Salle, McGraw Hill Book Company Inc. 1984
- 5. Fundamentals of microbiology, Martin Frobisher 9th edition , W. B. Saunders Co., 1974
- 6. General Microbiology, Stanier, Ingraham et al , 4thand 5th ed. 1987, Macmillan Education Ltd
- 7. Microbiology TMH 5th Edition by Michael J. Pelczar Jr., E.C.S. Chan , Noel R. Krieg
- Outlines of Biochemistry 5th edition, Conn P. Stumpf, G. Bruening and R. Doi. John Wiley and Sons. New York 1995
- Prescott, Harley, Klein-Microbiology, 5th and 6th edition, International edition 2002 and 2006, McGraw Hill Biology of Microorganisms by Brock 11th edition
- Principles of Biochemistry. 4th Edition. Lehninger D. Nelson and M. Cox. W.H. Freeman and Company. New York 2005
- 11. Textbook Of Microbiology, R. Ananthanarayan 7th Edition, Universities Press, 2009

	PRACTICALS SEMESTER I	2 Credits
	SECTION-1	1 Credit
	FUNDAMENTALS OF MICROBIOLOGY.	(45 lectures
Unit-I	1. Assignment : Contribution of Scientists in the field of	
	Microbiology	
	2. Special staining: Cell wall, capsule, endospore,	
	Flagella, lipid, metachromatic granules.	
Unit-II	3. Preparation of biofertilizer	
01111-11	4. Preparation of yoghurt	
	5. Production of fungal SCP or Production of Mushrooms	
	6. Leavening of bread or wine making	
	7. Immobilization of amylase producing fungi and	
	demonstration of activity	
	8. Nucleic acid detection by DPA and Orcinol.	
Unit-III	9. Preparation of Culture Media:	
	a. Liquid medium(Nutrient Broth)	
	b. Solid Media(Nutrient agar, Sabourauds agar)	
	10. Preparation of slant ,butts and plates	
	11. Inoculation techniques and Study of Growth:	
	a. Inoculation of Liquid Medium	
	b. Inoculation of Solid Media(Slants, Butts and Plates)	
	12. Study of Colony Characteristics of pigmented and	
	nonpigmented bacteria.	
	13. Study of Motility (Hanging Drop Preparation)	
	14. Use of Differential and Selective Media: (MacConkey and	
	Salt Mannitol Agar)	
	SECTION-2	1 Credit
	BASIC TECHNIQUES INMICROBIOLOGY.	(45 lectures
Unit-I	1. Parts of a microscope	(ie ieeui es
	2. Micrometry	
	3. Dark field and Phase contrast : Demonstration	
Unit-II	4. Monochrome staining	
	5. Gram Staining	
	6. Negative Staining.	
	7. Introduction to Laboratory equipments, disinfection and	
	discarding techniques in laboratory	
	a. Methods of preparation of glassware for Sterilization	
Unit III	b. Control of microorganisms using moist heat	
1		

 c. Control of microorganisms using dry heat (e.g.Sterilization of Dry powders, Rubber gloves, Bandages, Screw capped tubes) 8. Effect of UV Light, Desiccation, surface tension 9. Osmotic Pressure, heavy metals (Oligodynamic action) 10. Effect of dyes, phenolic compounds and chemotherapeutic agents (disc inhibition method) 11. Evaluation of Disinfectant
--

	PRACTICALS SEMESTER 2 SECTION-1	2 Credits 1 Credit
	BASICS OFMICROBIOLOGY.	(45 lectures)
Unit-I	 Spot assay and plaque assay of Bacteriophage (Demonstration) Slide Culture technique (Actinomycetes and Fungal Culture) 	
Unit-II	 3. Isolation of yeast, cultivation of other fungi 4. Cultivation on Sabouraud's agar 5. Static and Shaker Cultures 6. Fungal Wet mounts and Study of Morphological Characteristics: <i>Mucor, Rhizopus, Aspergillus, Penicillium</i> 7. Permanent slides of Algae, Protozoa 8. Isolation of anaerobes 9. Study of protozoa using wet mount from hay infusion broth 10. Normal flora of skin and saliva 11. Cough plate technique on SIBA 12. Wet Mount of Lichen 13. Isolation of <i>Rhizobium</i> 	
	14. Isolation of <i>Azotobacter</i> SECTION-2 EXPLORING MICROBIOLOGY.	1 Credit (45 lectures)
Unit-I	 Growth curve (Demonstration) only in complex media. Breed's Count Haemocytometer Viable count: Spread plate and pour plate. Brown's opacity Effect of pH and temperature on growth Optimum Growth Conditions pH and temperature Methods of culture preservation 	(

Unit-II	9. Carbohydrates- Benedicts, Molisch's test.10. Proteins, amino acids- Biuret, Ninhydrin.	
Unit-III	 Study of virulence factors – Enzyme Coagulase Study of virulence factors – Enzyme Hemolysin Study of virulence factors – Enzyme Lecithinase 	

Guidelines for Examination Pattern:-

There are two theory papers of 60 marks each (External assessment) at the end of each term. There are 40 marks given for internal assessment of both the theory papers at the end of each term.

Practicals (External Assessment) of 50 marks at the end of each term for each paper

PAPER	TYPE OF EXAM	MA	RKS
A. <u>THEORY</u>		Paper I	Paper II
Paper I and Paper II (INTERNAL) for semester I and II	CLASS TEST (MCQ)	20	20
	PARTICIPATION IN THE CLASS	5	5
	ASSIGNMENT	15	15
	TERM END EXAM	60	60
	TOTAL	100	100
B. <u>PRACTICAL</u>			
Semester I	Term end exam	50	50
Semester II	Term end exam	50	50
	TOTAL	100	100

PRACTICAL EXAMINATION PATTERN

(Semester end practical examination):- 50 Marks Per Section

Section-I based on course-1, Section-II based on course-2

Sr.No.	Particulars			Marks	Total
1.	Laboratory	work (Section-I, II)		40 + 40 = 80	
2.	Journal	(Section-I, II)		05 + 05 =10	
3.	Viva	(Section-I, II)		05 + 05 =10	
			Grand Total	50 + 50 =100	

PRACTICAL BOOK / JOURNAL Semester I and II

For each semester end practical Examination, students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department, failing which the student will not be allowed to appear for the practical examination.

PATTERN OF THEORY EXAM FOR PAPER I and II

Total marks:- 60 Q1:- Unit I – 15 Q2:- Unit II – 15 Q3:- Unit III – 15 Q4:- Unit I, II and III – 15 All the above questions will have internal choice.

PREAMBLE

With the introduction of Autonomy by the S.I.E.S. College of Arts, Science and Commerce under the University of Mumbai; from the academic year 2018-19; the syllabus for the S.Y.B.Sc Microbiology has been drafted to cover the many aspects of the subject.

The syllabus has been planned to cover basic techniques of Microbiology and an introduction to newer advanced topics such as Nanobiotechnology, Biofilms, Bioremediation, Biosensors. The syllabus is also designed as per the norms of the CBGS pattern which consists of two semesters per academic year.

The students will be introduced to Industrial Microbiology, validation and calibration in order to prepare them for industry work. Hence the module of Industrial, Food and Dairy microbiology has been introduced in the syllabus.

The aim of the course is to prepare the students over three years so that they are competent to think independently and be trained for a career in research or industry.

S.Y.B.Sc Microbiology Syllabus (General Outline) For autonomy Semester III

	SEMESTER III		
Course Code	Title	Credits	Lectures / week
SIUSMIC-31 Theory	Biomolecules and Analytical Microbiology	2 Credits (45 lectures)	3
Unit-l	Estimation of Biomolecules and Biostatistics	15 lectures.	1
Unit-II	Nucleic acid chemistry and Genetic elements	15 lectures.	1
Unit-III	Analytical techniques 1	15 lectures.	1
SIUSMIC-32 Theory	Environmental Microbiology	2 Credits (45 lectures)	3
Unit-I	Air Microbiology	15 lectures.	1
Unit-II	Fresh Water and Sewage Microbiology	15 lectures.	1
Unit-III	Soil and Geo Microbiology	15 lectures.	1
SIUSMIC-33 Theory	Advances in Microbiology and Medical Microbiology	2 Credits (45 lectures)	3
Unit-I	Nanobiotechnology, Biofilms and biosensors with applications	15 lectures.	1
Unit-II	Epidemiology and Diagnostic Microbiology	15 lectures.	1
Unit-III	Introduction to Immunology	15 lectures.	1
SIUSMICP-3	PRACTICALS	3 Credits	9
SECTION-1	Biomolecules and Analytical Microbiology (Practicals Based On Unit-I,II and III Of SIUSMIC-31)	1 Credit (45 lectures)	3
SECTION-2	Environmental Microbiology (Practicals Based On Unit-I,II and III Of SIUSMIC-32)	1 Credit (45 lectures)	3
SECTION-3	Advances in microbiology and Medical Microbiology (Practicals Based On Unit-I,II and III Of SIUSMIC-33)	1 Credit (45 lectures)	3

S.Y.B.Sc Microbiology Syllabus (General Outline) For autonomy Semester IV

	SEMESTER IV		
Course Code	Title	Credits	Lectures / week
SIUSMIC-41 Theory	Metabolism and Basic Analytical Techniques	2 Credits (45 Lectures)	3
Unit-I	Introduction To Metabolism and Bioenergetics	15 lectures.	1
Unit-II	Enzyme Kinetics	15 lectures.	1
Unit-III	Analytical techniques 2	15 lectures.	1
SIUSMIC-42 Theory	Industrial, Food and Dairy Microbiology	2 Credits (45 Lectures)	3
Unit-I	Industrial Microbiology	15 lectures.	1
Unit-II	Food Microbiology	15 lectures.	1
Unit-III	Dairy Microbiology	15 lectures.	1
SIUSMIC-43 Theory	Microbial diversity, taxonomy and Applications Of Microbiology	2 Credits (45 lectures)	3
Unit-I	Microbial Taxonomy	15 lectures.	1
Unit-II	Microbial diversity in extreme environments andMetagenomics	15 lectures.	1
Unit-III	Biofertiliser, Biopesticide, Bioremediation	15 lectures.	1
SIUSMICP-4	PRACTICALS	3 Credits	9
SECTION-1	Metabolism and Basic Analytical Techniques (Practicals Based On Unit-I,II and III Of SIUSMIC-41)	1 Credit (45 lectures)	3
SECTION-2	Industrial, Food and Dairy Microbiology (Practicals Based On Unit-I,II and III Of SIUSMIC-42)	1 Credit (45 Lectures)	3
SECTION-3	Microbial diversity and taxonomy and Applications Of Microbiology (Practicals Based On Unit-I,II and III Of SIUSMIC-43)	1 Credit (45 Lectures)	3

	S.Y.B.Sc Semester III (Detailed Syl	labus)	
Course Code	Title	Credits	Notional Periods
SIUSMIC-31 Theory	Biomolecules and Analytical Microbiology	2 Credits (45 lectures)	Self Study (45
Unit-I	Unit I: Estimation Of Biomolecules and Biostatistics	15 Lectures	
	1.1 Macromolecular composition of a microbial cell	1	
	1.2 Methods of elemental analysis: Carbon ,Nitrogen and Phosphorus	2	
	 1.3 Estimation of Proteins and amino acids Proteins by Biuret method (Direct and indirect) Amino acids by Ninhydrin method 1.4 Estimation of Carbohydrates Total carbohydrates by Anthrone method Reducing Sugars (maltose) by DNSA method Reducing sugar Felhing's method 	22	15
	1.5 Extraction of Lipids by Soxhlet method	1	
	1.6 Estimation of Nucleic acids General principles and extraction of nucleic acids DNA by DPA method, RNA by Orcinol method	2	
	1.7 Basics of Biostatistics: Introduction to Biostatistics Sample and Population Data presentation: Dot diagram, Bar diagram, Histogram, Frequency curve. Central Tendency: Mean, Median, Mode Summation, notations.	5	
Unit II	Unit II: Nucleic acid chemistry and Genetic elements	15 Lectures	
	 2.1 Nucleic acid chemistry Denaturation of double helical DNA and RNA Nucleic acid from different species can form Hybrids, Nucleotides and nucleic acids undergo non enzymatic transformations, DNA methylation 2.3 Other Functions of nucleotides 	6	15
	2.4 Central dogma of life, Genetic code	4	
	2.5 Plasmids and types of Plasmids	2	
	2.6 Transposons (Structure and Types)	3	
Unit III	Unit III: Analytical Techniques 1	15 Lectures	
	 1.1 Spectroscopic Techniques Visible, UV and IR spectrophotometry Principles, instrumentation and applications 	8	

	1.2 pH meter: principle, instrumentation and application	2	15
	 1.3 Electrophoresis General principles, Factors affecting electrophoresis, apparatus, support media – agarose gels, polyacrylamide gels and applications 	5	
SIUSMIC-32 Theory	Environmental Microbiology	2 Credits (45 lectures)	Self Study (45)
Unit-I	Unit I: Air Microbiology	15Lectures	
	1.1 Aeromicrobiology: Important airborne pathogens and toxins, Aerosols, nature of bioaerosols, aeromicrobiological pathway, microbial survival in the air, extramural aeromicrobiology, intramural aeromicrobiology	7	15
	1.2 Sampling Devices for the Collection of Air Samples, Detection of microorganisms on fomites	5	
	1.3 Air Sanitation	2	
	1.4 Air Quality Standards	1	
Unit-II	Unit II : Fresh Water and Sewage Microbiology	15 lectures.	
	 Unit II (A) Fresh Water Microbiology: 2.1 Fresh water environments and micro-organisms found in Springs, rivers and streams, Lakes, marches and bogs 	3	
	marshes and bogs 2.2 Potable water: Definition, water purification, water quality standards and pathogens transmitted through water	2	
	2.3 Microbiological analysis of water: Indicator organisms and their detection in water- Total Coliforms, Faecal Coliforms and <i>E. coli</i> , Faecal <i>Streptococci</i> , <i>Clostridium perfringens</i>	2	15
	Unit II (B) Sewage Microbiology:		
	2.4 Modern Waste Water treatment: Primary, Secondary and Tertiary Treatment	1	
	2.5 The nature of wastewater and Monitoring of waste water treatment process (BOD,COD)	2	
	2.6 Removal of Pathogens by Sewage treatment Processes	1	
	2.7 Oxidation Ponds and Septic tanks	1	
	2.8 Sludge Processing	1	
	2.9 Disposal of treated waste water and biosolids.	2	
Unit III	Unit III: Soil and Geo Microbiology:	15 lectures.	15
	3.1 Terrestrial Environment Soil- Definition, Composition, function, Textural triangle Types of soil microorganisms and their activities	2	
	3.2 Methods of studying soil microorganisms: Sampling, Cultural methods, Physiological	5	

	methods, Immunological methods, Nucleic acid based methods, Radioisotope techniques		
	3.3 Biogeochemical Cycles: Carbon cycle, Nitrogen cycle, Sulphur cycle, Phosphorus Cycle, Iron cycle	6	
	3.4 Soil Bioremediation	2	
SIUSMIC-33 Theory	Advances in microbiology and Medical Microbiology	2 Credits (45 lectures)	Self Study (45)
Unit I	Unit I: Nanobiotechnology, Biofilms and biosensors with applications	15 lectures	
	1.1 Nanobiotechnology: Introduction of Nanobiotechnology and application in drug and gene delivery, Types of nanomaterials, nanoparticles, nanocapsules, nanotubes, liposomes, nanogels, Dendrimers, Gold nanoparticles (Definition and applications)	8	15
	 1.2 Biofilms and biosensors with applications: Biofilms: Introduction of biofilms, Types of biofilms, Mechanism of formation of biofilms and applications of biofilms. Biosensors: Introduction, design, working and applications of biosensors 	7	
Unit II	Epidemiology and diagnostic Microbiology	15 lectures.	
	2.1 Epidemiological terminology: Epidemiology, sporadic diseases, endemic diseases, Hyperendemic Diseases, Epidemic Diseases, Index Case, Pandemic Disease, Outbreak	1	
	 2.2 The Spread of Infection: a) Reservoirs of infection-Human reservoir, Animal reservoir, non-living reservoir. b) Transmission of Disease- Contact transmission, Vehicle Transmission and vectors 	2	
	2.3 Nosocomial infection: (1L) Microorganisms in hospitals, compromised host, Transmission and control of Nosocomial infection	1	15
	 2.4 Isolation of Pathogens from clinical specimens: a) Growth media and Culture b) Collection of specimens, handling and transport c) Types of specimens and their cultureBlood, Urine, Faeces, sputum, Cerebrospinal fluid, pus, genital and culture of Anaerobes. 	4	
	 2.5 Identification of microorganisms from specimens: a) Microscopy b) Growth-Dependent Identification Methods 	2	
	2.6 Rapid Methods of Identification: Molecular Methods and Analysis of	5	

			1
	Metabolic Products: a) Nucleic Acid –Based Detection Methods b) Gas liquid Chromatography c) Plasmid Fingerprinting		
Unit III	Introduction to Immunology	15 lectures.	
	 3.1 Basic concepts in immunology Haematopoiesis, Blood cell types, Components of immune system – Cells and organs of the immune system 	6	15
	3.2 Types of Immunity: Innate and Acquired	3	10
	3.2 Humoral and Cell mediated immune response	4	
	3.3 Phagocytosis and Acute and chronic inflammation	2	
SIUSMICP-3	PRACTICALS	2 Credits	Notional Periods
Section-1	Biomolecules and Analytical Mic		
	(Practicals Based On Unit-I,II and III Of	SIUSMIC-31)	
Questions Q	 Estimation of total sugar by Anthrone method Estimation of reducing sugar by DNSA method Estimation of reducing method by Felhing's method Estimation of protein Biuret method (indirect and direct) Extraction of lipid by Soxhlet method (Demonstration) Isolation and detection of DNA from onion /E.coli Estimation of DNA by DPA method Estimation of RNA by Orcinol Method Data presentation and interpretation Use of pH meter U.V. spectrophotometer (Demo) Electrophoresis(Demo) 	1Credit (45 lectures)	Self Study (45)
Section-2	Environmental Microbiolo (Practicals Based On Unit-I,II and III Of		
	 Enumeration of microorganisms in air and study of its load after fumigation Study of air microflora and determination of sedimentation rate Routine analysis of water: a. Standard Plate Count b. Detection of Coliforms in water: Presumptive Test, Confirmed Test and Completed Test c. Rapid Detection of <i>E.coli</i> by MUG Technique (Demonstration) Waste water analysis: a. Study of microbial flora in raw and treated sewage 	1 credit (45 lectures)	Self Study (45)

Section-3	 b. Determination of total solids in wastewater c. Determination of BOD and COD of wastewater 5. Total viable count of soil microflora 6. Isolation of bacteria, Actinomycetes and fungi from soil 7. Enrichment and isolation of Nitrosifiers, Nitrifiers, Cellulose degraders, Sulphate reducers and Phosphate solubilisers from soil 8. Winogradskys column 9. Visit to a sewage treatment plant or water purification plant 		
	 Study of biofilm: slide immersion tech and staining. Preparation of nano particles and study their antibacterial activity. Blood staining by the Field's method Use of Selective and Differential Solid Media: Mac Conkeys agar, SS agar, XLD agar, TCBS agar, SIBA, Salt Mannitol agar, CLED agar, Cetrimide agar. Use of Biochemical Media/Tests for Identification of Pathogens: Carbohydrate fermentation, Indole test, Methy Red test,Vogues Proskauer test, Citrate Utilization, Lysine Decarboxylase, Gelatin Liquefaction, Nitrate Reduction, Phenylalanine deaminase test, Urease test, TSI agar, Oxidase test, Catalase test, Bile solubility test, Coagulase test, Optochin test and Bacitracintest. Preparation of serum and plasma Single Radial Immuno Diffusion assay Blood grouping (Direct) Phagocytosis (Demo) 	1 Credit (45 lectures)	Self Study (45)

REFERENCES: SIUSMIC-31

- 1. A handbook book of Organic analysis: qualitative and quantitative 4th edition, Hans Thacher Clarke, CBS publishers and distributors, New Delhi.
- 2. An Introduction To Practical Biochemistry by Plummer David (1979)TMH
- 3. Biostatistics. P.N. Arora, P.K. Malhan. Himalaya Publishing House.
- 4. Genetics-A molecular approach, Peter J. Russell (2006) 2nded.
- 5. Laboratory Manual in Biochemistry, J. Jayaraman, (2003) New Age International Publishers
- 6. Methods In Microbiology, Vol.5B, Ed. Norris and Ribbon, Academic Press
- 7. Methodsinbiostatisticsformedicalandresearchworkers.6th edition. B. K. Mahajan.Jaypee brothers, Medical Publishers (P)ltd
- 8. Principles and Techniques of practical biochemistry by William and Wilson.
- Principles and techniques of Biochemistry and Molbiology 6th ed, Keith Wilson and John Walker, Cambridge University press,2006
- 10. Principles of Biochemistry, Lehninger: 4th Ed.,D.Nelson and M. Cox, W. H. Freeman and Co., (LPE)

REFERENCES: SIUSMIC-32

- 1. Air Quality Standards- NAAQS Manual , Volume I
- Environmental Microbiology , 2nd Edition; Raina M. Maier, Ian L. Pepper, Charles P. Gerba, 2010 Academic Press
- 3. Fundamental Principles of Bacteriology , 7th Editon; A.J. Salle ,Tata Mc Graw Hill Publishing Company
- 4. Fundamentals of Microbiology, 9th Edition , Frobisher, Hinsdill, Crabtree, Goodheart, 1974, Saunders College Publishing
- 5. Introduction to Environmental Microbiology Barbara Kolwzan, Waldemar Adamiak.
- 6. Prescott's Microbiology, 8th Edition; Joanne M. Willey, Linda M. Sherwood, Christopher J.Woolverton, 2011, Mc Graw Hill InternationalEdition
- 7. Soil Microbiology-4th Edition, N.S Subba Rao, 2000, Oxford and IBH Publishing PvtLtd

REFERENCES: SIUSMIC-33

- 1. Bionanotechnology Andrew and Waqar, One Central Press Ltd, UK., November, 2014.
- 2. Brock biology of microorganism by Michael T Madigan. and John M Martinco.Pearson education.
- 3. Diagnostic Microbiology, Bailey and Scott, 11th edition Publ:Mosby
- 4. Immunology Essential and Fundamental, Third Edition, Pathak and Palan.
- 5. Immunology; Kuby 6thedition.
- 6. Microbiology By Prescott, Harley, Klein's 7thEdn
- 7. Microbiology, An Introduction by Tortora, Funke and Case 9th and11th edition, Pearson education.
- 8. Practical medical microbiology by Mackie and McCartney 14th edition. Publ: Churchill Livingstone
- 9. Textbook of Mocrobiology by Anantnarayan and Paniker's, 8th Ed.
- 10. The Elements of Immmunology by Fahim Khan. Pearson Education.

Course Code	Title	Credits	Notional Periods Self Study (45)
SIUSMIC-41 Theory	Metabolism and Basic Analytical Techniques	2 Credits (45 lectures)	
Unit-I	Introduction To Metabolism and Bioenergetics	15 Lectures	
	 Bioenergetics and thermodynamics: Energy transformations, thermodynamic quantities, standard –free energy, difference between ΔG and ΔGo' 	6	
	1.2 Structure of ATP, phosphoryl group transfer and ATP, Types of energy –rich compounds, multi-roles of ATP, inorganic phosphoryl group donor	5	15
	1.3 Biochemical and chemical reactions, Biological oxidation-reduction reaction	4	
Unit-II	Enzyme Kinetics	15 Lectures	
	 2.1 Introduction of Enzymes: General properties of enzymes Concept of activation energy Rate law for a simple catalysed reaction, Michaelis- Menten equation and it's derivation Lineweaver Burk plot Classification of enzymes 2.2.Overview of Coenzyme: 	6	
	Coenzymes: Different types and reactions catalyzed by coenzymes NAD ⁺ : structure, occurrence and biochemical function	2	15
	 2.3 Enzyme Kinetics: Saturation kinetics Effect of temperature and pH Effect of Inhibitors- Reversible and irreversible, competitive, Non competitive and uncompetitive inhibitors, Multisubstrate reactions- Ordered, Random and pingpong reactions. Allosteric effects in enzyme catalysed reactions- Koshland-Nemethy and Filmer model and Monod, Wyman and Changeux model 	7	15

Unit-III	Analytical techniques 2	15 Lectures				
	3.1 Paper and thin layer Chromatography Introduction to chromatography, types of chromatography Paper chromatography: Principle, circular, ascending and descending Paper Chromatography, Thin layer chromatography : principle, preparation of TLC plates, procedure for TLC, preparative TLC, 2D TLC, HPTLC	4				
	3.2 Column chromatography : Introduction and principle Size Exclusion chromatography , Ion Exchange chromatography, Affinity chromatography, High Performance Liquid chromatography Gas chromatography	8				
	3.3 Centrifugation Introduction : basic principles of sedimentation, Types, Preparative centrifugation and its applications, Analytical centrifugation and its application	3	15			
SIUSMIC-42		2 Credits	Self Study			
Theory	Industrial, Food and Dairy Microbiology	(45 lectures)	(45)			
Unit-I	Industrial Microbiology	15 lectures				
	 1.1 Strains of industrially important microorganisms: a. Desirable characteristics of industrial strain b. Principles and methods of primary and secondary Screening. 	3				
	 1.2 Types of fermentations: a. Surface and Submerged, b. Batch, continuous fermentation c. Solid state fermentation 1.3 Design of an ideal fermenter: conventional stirred tank reactor 	5	15			
	1.3 Concept of upstream and Downstream processing Industrial inoculum build up		10			
	 1.4 Media for industrial fermentations: a. Production and Inoculum media, b. Media components :- Carbon source, nitrogen source, amino acids and vitamins, minerals, water, buffers, antifoam agents, precursors, inhibitors and inducers 	4				
Unit-II	Food Microbiology	15 lectures				
	2.1 Introduction: Significance, food as a substrate and sources2.2 Intrinsic and extrinsic factors	3	15			

	3.2 Methods of analysis used in classification : Phenotypic analysis (Morphological characteristics, Physiological and metabolic characteristics, Biochemical characteristics, Ecological characteristics, Fatty acid analysis)	2	
	3.1 Introduction to microbial taxonomy Systems of classification(Cavalier Smith 6 kingdom) Bergey's manual The three domain concept based on phylogeny Nomenclature Taxonomic ranks Numerical Taxonomy	4	15
Unit-I	Microbial Taxonomy		· · /
SIUSMIC-43 Theory	Microbial diversity, taxonomy and Applications Of Microbiology	2 Credits (45 lectures)	Self Study (45)
	 3.5. Quality control ofmilk:- a. Rapid platform test:- MBRT,Resazurin b. Microbiological analysis of milk.:- SPC, Coliform count, Psychrophiles, Thermophilic count. 	3	
	d Dried milk	1	
	c Cheese-Cheddar and Cottage cheese	2	
	3.4. Milk products:- production of a Yoghurt b Butter	1	
	Efficiency testing of Pasteurization (Phosphatase Test)	3	15
	Flavour defects Ropiness of milk Stormy fermentation of milk 3.3 Pasteurization of milk-LTLT, HTST, UHT Method		
	3.2 Spoilage of milk: Sources of contamination of milk Color defects	3	
	3.1 Milk- Definition , composition,	1	
Unit-III	Dairy Microbiology	15 lectures	
	2.6 Methods of detection of microorganisms in food: overview of cultural, microscopic, physical, chemical and bioassay methods	3	
	Drying, Radiations, Chemical preservatives. 2.5 Food control agencies:- HACCP, FDA, FSSAI	2	
	2.4General principles of food preservation (principle of each method and example of foods only): High temperature (Including TDT, TDP, D, F and Z value), Low temperature (Freezing), Asepsis, Drving, Padiationa, Chamical preservatives	5	
	2.3 General Principles of spoilage: Spoilage of fresh foods: fruits and vegetables, eggs, meat, poultry and seafood	2	

	3.3 Genetic analysis		
	3.4 Amino acid sequencing	5	
	3.5 Phylogenetic analysis		
	Nucleic acid sequencing		
	Analysis of individualgenes		
	Multilocus gene sequence analysis	4	
	Whole genome sequence analysis		
	3.6 Phylogenetic tree: Types		
TI	Biodiversity in extreme environments and		
Unit-II	Metagenomics	15 lectures	
	Biodiversity In Extreme Environments		
	2.1 Extreme Environments and their types with		
	respect to the physical conditions which lead to		
	microbial stress		
	a) Temperature based environments- Low and	7	
	high temperature environments		
	b) pH based environments- Acidic and		
	alkaline environments, Acid mine drainage		
	c) Environments with high salt concentration		
	2.2 Applications of extremophiles:		15
	a) Applications of Acidophiles and Alkalophiles		
	b) Applications of halophiles- in biotechnology and		
	medicine	7	
	c) Applications of psychrophiles in pharmaceuticals	7	
	and environment.		
	d) Applications of thermophiles and		
	hyperthermophiles in enzymology		
	2.3 Metagenomics	1	
Unit-III	Biofertiliser, Biopesticide , Bioremediation	15 lectures	
	3.1 Biofertiliser:		
	Introduction of Biofertilizers		
	Different types of biofertilizers		
	Mass production of Biofertilizers		
	Application of Biofertilizers	8	
	Azolla as cattle feed	0	
	List of Biofertilizer production units		
	Constraints in Biofertilizer Technology,		
	Biofertilizer strains developed		
	3.2 Biopesticides		
	Introduction of biopesticides		15
	Types of Biopesticides		10
	Basic requirements for establishment of		
	Biopesticide units,	3	
	Technical Aspects of Biopesticides		
	Major biopesticides produced and used in India		
	Biopesticide formulations		
	3.3 Bioremediation:		
	Introduction of Bioremediation		
	Principle of Bioremediation	4	
	Factors affecting Bioremediation		
L			

	Microbial Populations used for Bioremediation		
	processes,		
	Bioremediation strategies,		
	Advantages and Disadvantages of Bioremediation		
SIUSMICP-4	PRACTICALS	2 Credits	
Section-1	Metabolism and Basic Analytical Techniques	1 Credit	
Section-1	(Practicals Based On Unit-I,II and III Of SIUSMIC-41)	(45 lectures)	
	1. Problems on bioenergetics to calculate the	(45 icetures)	Self Study
	Keq; Gibbs energy, enthalpy, etc		(45)
	2. Isolation of amylase, protease,		(43)
	lipase producers		
	3. Extracellular production of invertase from yeast		
	4. Effect of pH, Temp, substrate and enzyme	1 Credit	
	concentration on activity of invertase.	(45 lectures)	
	5. Determination of Km and Vmax of an enzyme	(45 lectures)	
	6. Separation and identification of amino acids		
	and sugars by ascending paper		
	chromatography		
	7. Density gradient centrifugation		
Section-2	Industrial, Food and Dairy microbiology		
Section-2	(Practicals Based On Unit-I,II and III Of SIUSMIC-42)		
	1. Crowded plate technique		Calf Ctudy
	2. Antibiotic producer screening by Wilkins		Self Study
	overlay method		(45)
	3. Antibiotic spectrum determination(streak/strip)		
	4. Isolation of food spoilage agent:		
	a) Fruit/Vegetable- Physical and		
	Microscopic and Pectinolytic agent		
	b) Meat - Proteolytic, lipolytic, sacchrolytic		
	5. Determination of TDT and TDP		
	6. Determination of Salt and sugar tolerance	1 Credit	
	7. Determination of MIC of a Chemical	(45 lectures)	
	preservative		
	8. Visit to Food/Dairy industry		
	9. RPT of Milk– RRT, MBRT, DMC		
	10. Microbiological Quality Control of Milk as per		
	BIS/FSSSAI		
	11. Analysis of Cheese, Paneer, Butter,		
	Yogurt/curd as per BIS/FSSAI (Group		
	experiment)		
	12. Solid state fermentations (group experiment)		
Section- 3	Microbial diversity, taxonomy and Applications		
Section 5	of Microbiology		
	(Practicals Based On Unit-I,II and III Of SIUSMIC-43)		
	1. Estimation of heavy metals (Titration method)		Self Study
	2. Preparation of biofertilizer		(45)
	3. Efficacy of biofertilizer	1 Credit	(+3)
	4. Study of thermophiles, acidophiles and	(45 lectures)	
	psychrophiles	(75 100105)	
	5. Identification of bacteria		

REFERENCES: SIUSMIC-41

- 1. Fundamentals of Biochemistry. D. Voet and J. Voet Publisher Wiley plus Edition5th.
- 2. Instrumental Methods of chemical analysis, V.K. Ahluwalia, Ane Books Pvt.Ltd;2015.
- 3. Laboratory manual in Biochemistry- J. Jayaraman.
- Lehninger- Principles of Biochemistry- David Nelson, Michael Cox. 4th edition W.H. Freeman and Company[Low price edition- for sale in India, Pakistan, Sri Lanka, Bangladesh, Nepal and Bhutan]
- 5. Outlines of Biochemistry. E.E. Conn and P. K. Stumpf , G. Bruening, R.N.Doi. 5th Edition, John Wiley and sons.
- 6. Principles and techniques of Biochemistry and Mol biology 6th ed, Keith Wilson and John Walker, Cambridge University press,2006
- 7. Principles and Techniques of practical biochemistry by William and Wilson.
- 8. Principles of Biochemistry- G. Zubay, W.W. Parson, D.E.Vance. Wm. C. Brown Publishers
- 9. Understanding Enzymes: Trevor Palmer 4th Edition.

REFERENCES: SIUSMIC-42

- 1. Fermentation Technology by H. A. Modi, 2009. Vol 2, Pointer Publications, India
- 2. Food Microbiology, Frazier and Westhoff, Tata McGraw Hill, 4thEdition
- Industrial Microbiology by Casida L. E., 2009 Reprint, New Age International (P) Ltd, Publishers, NewDelhi
- 4. Industrial Microbiology. A. H. Patel. MacMillan. New Delhi.1984.
- 5. Microbiology By Prescott, Harley, Klein's 7thEdn
- 6. Milk and Milk Products by Eckles and Eckles
- 7. Modern Food Microbiology. James Jay. 5thEd,
- 8. Outlines Of Dairy Technology, Sukumar De, Oxford University Press
- 9. Prescott and Dunn's "Industrial Microbiology". 1982 4th Edition, McMillan Publishers
- 10. Principles of Fermentation Technology by Stanbury P. F., Whitaker A. and Hall- S. J., 1997, 2nd Edition, Aditya Books Pvt. Ltd, NewDelhi.

REFERENCES: SIUSMIC-43

- Biopesticide Formulations, Possibility of Application and Future Trends Slavica Gašić and Brankica Tanović, Pestic. Phytomed. (Belgrade), 28(2), 2013, 97–102 Review paper
- 2. Biopesticides: An eco-friendly approach for pest control; Journal of Biopesticides 3(1 Special Issue) 186 188 (2010) 186,Suman Gupta and A. K. Dikshit
- Bioremediation An Overview Jr. of Industrial Pollution Control 27(2)(2011) pp 161-168, V. Mary Kensa
- 4. Bioremediation: Features, Strategies and applications, Shilpi Sharma.
- 5. Brock Biology of Microorganisms, Madigan, Martinko, Dunlap and Clark (2009) 12th edition, Pearson Education
- Characteristics and Significance of Microbial Biofilm Formation Biofilms Importance and Applications; Periodicum Biologorum., Vol 109, No 2, 2007. Indian Journal of Biotechnology, Vol8, April 2009, pp159-169.
- 7. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. A Mendez Vilas Edition
- 8. General Microbiology; Stanier R.Y. And Other, MacMillan (1989) 5th editon

- 9. Microbiology: Prescott's, Harley and Klein's, Willey, Sherwood, Woolverton (2008) 7th edition, McGraw-Hill International edition
- 10. Microbiology: Prescott's, J.M. Willey, L.M. Sherwood, C.J. Woolverton, (2011) 8th edition, McGraw-Hill International edition
- 11. Molecular Biotechnology : Principles And Applications Of Recombinant DNA; Glick, Bernard; Pasternak, Jack 2003.
- 12. Text book of Biotechnology by R C Dubey. 4thedition
- 13. www.ianetwerk.nl Biofilm as New Biomaterial

Guidelines for Examination Pattern:-

There are three theory papers of 60 marks each (External assessment) at the end of each term. There are 40 marks given for internal assessment for each theory papers at the end of each term. Practicals (External Assessment) of 50 marks at the end of each term for each paper

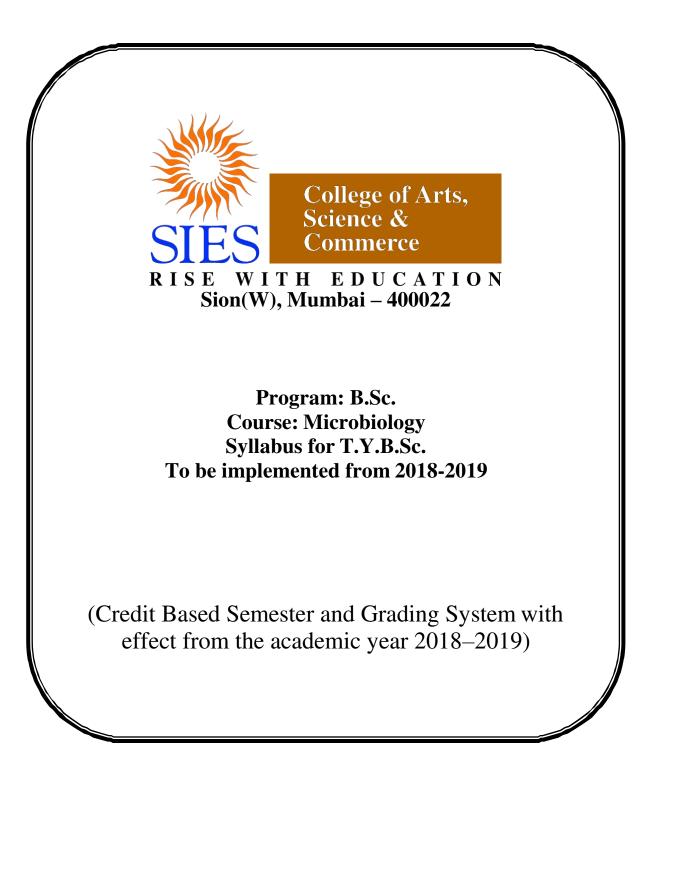
PAPER	TYPE OF EXAM	MARKS		
THEORY		Paper I	Paper II	Paper III
Paper I, II and Paper III (INTERNAL) for semester III and IV	CLASS TEST (MCQ)	20	20	20
	PARTICIPATION IN THE CLASS	5	5	5
	ASSIGNMENT	15	15	15
Theory	TERM END EXAM	60	60	60
	TOTAL	100	100	100

PRACTICAL EXAMINATION PATTERN

Semester end practical examination):- 50 Marks Per Section

Section-I based on course-1, Section-II based on course-2 and Section-III based on course-3

Sr.No.	Particulars			Marks	Total
1.	Laboratory work (Section-I, II, III)		40 + 40 + 40 =120		
2.	Journal	(Section-I, II,III)		05 + 05 + 0	5 =015
3.	Viva	(Section-I, II,III)		05 + 05 + 0	5 =015
			Grand Total	50 + 50 + 5	0 =150


PRACTICAL BOOK / JOURNAL Semester III and IV

For each semester end practical Examination, students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

PATTERN OF THEORY EXAM FOR PAPER I and II

Total marks:- 60 Q1:- Unit I -Q2:- Unit II -Q3:- Unit III -Q4:- Unit I, II and III -All the above questions will have internal choice.

PREAMBLE

The existing university syllabus of T.Y.B.Sc. Microbiology was due for revision as per the CBSGS pattern which is done as follows and will be implemented from the academic year 2018- 2019 under autonomy.

Keeping in tune, with the revised autonomous syllabi of F.Y.B.Sc. and S.Y.B.Sc., the committee has taken utmost care to maintain the continuity in the flow of information of higher level at T.Y.B.Sc. Hence some of the modules of the existing university T.Y.B.Sc. syllabus have been upgraded with the new modules in order to make the learners aware about the recent developments in various branches of Microbiology (like Microbial Genetics, Molecular Biology, Virology, Medical Microbiology, Immunology, Microbial Biochemistry, Industrial Microbiology, Microbial Biotechnology) with an objective to raise the students awareness in interdisciplinary courses such as Biostatistics, Bioinformatics, Bioinstrumentation, Nanoscience

All the 8 courses of theory and practicals (Semester-V and Semester-VI together) are compulsory to the students offering microbiology as a single major subject (6 un0its pattern of the old course). These courses are:-

- 1. SIUSMIC51and SIUSMIC61
- 2. SIUSMIC52 and SIUSMIC62
- 3. SIUSMIC53 and SIUSMIC63
- 4. SIUSMIC54 and SIUSMIC64

However, students opting for double major subject (3 units pattern of old course) shall have following 04 courses of theory and practicals (Semester-V and Semester-VI together) compulsory:-

- 1. SIUSMIC51 and SIUSMIC61
- 2. SIUSMIC52 and SIUSMIC62

T. Y. B. Sc. MICROBIOLOGY THEORY SEMESTER-V

TITLE	CREDITS and Lectures/SEM
	Lectures/SEM
MICROBIAL GENETICS	2.5 credits (60 L)
DNA REPLICATION	15 L
MUTATION AND REPAIR	15 L
GENETIC EXCHANGE	15 L
TRANSCRIPTION, GENETIC CODE AND TRANSLATION	15 L
MEDICAL MICROBIOLOGY AND IMMUNOLOGY PART I	2.5 credits (60 L)
MEDICAL MICROBIOLOGY I	15 L
MEDICAL MICROBIOLOGY II	15 L
GENERAL IMMUNOLOGY-I	15 L
GENERAL IMMUNOLOGY-II	15 L
MICROBIAL BIOCHEMISTRY : PART- I	2.5 credits (60 L)
BIOLOGICAL MEMBRANES and TRANSPORT	15 L
BIOENERGETICS and BIOLUMINESCENCE	15 L
METHODS OF STUDYING METABOLISM AND CATABOLISM OF CARBOHYDRATES	15 L
	MICROBIAL GENETICS DNA REPLICATION MUTATION AND REPAIR GENETIC EXCHANGE TRANSCRIPTION, GENETIC CODE AND TRANSLATION MEDICAL MICROBIOLOGY AND IMMUNOLOGY PART I MEDICAL MICROBIOLOGY II GENERAL IMMUNOLOGY-I GENERAL IMMUNOLOGY-II BIOLOGICAL MEMBRANES and TRANSPORT BIOENERGETICS and BIOLUMINESCENCE METHODS OF STUDYING METABOLISM AND

Unit IV	FERMENTATIVE PATHWAYand ANABOLISM OF CARBOHYDRATES	15 L
SIUSMIC54	BIOPROCESS TECHNOLOGY	2.5 credits (60 L)
Unit I	STRAIN IMPROVEMENT AND STERILIZATION TECHNIQUES	15 L
Unit II	FERMENTER EQUIPMENT AND CONTROL	15 L
	DOWNSTREAM PROCESSING AND	15 L
Unit III	ENVIRONMENTAL ASPECTS	
Unit IV	TRADITIONAL INDUSTRIAL FERMENTATIONS PART-I	15 L

N.B.- (I) Each theory period shall be of 48 minutes duration. Theory component shall have 240 instructional periods plus 240 notional periods per semester which is equal to 384 learning hours.For theory component the value of One Credit is equal to 38.40 learning hours.

(II) Each practical period shall be of 48 minutes duration. Practical component shall have 240 instructional periods plus 60 notional periods per semester which is equal to 240 learning hours.For practical component the value of One Credit is equal to 40 learning hours.

T. Y. B. Sc. Microbiology Theory: SIUSMIC-51(Microbial Genetics).

Learning Objectives:

Microbial Genetics is an undergraduate T.Y. B.Sc. Microbiology course that deals with both conceptual and practical tools for generating, processing and understanding biological genetic information. It develops knowledge of the underlying theories of genetics which exhibits a broad understanding of genetic exchange among prokaryotes. It also gives students hands-on competence in fundamental molecular biology theories and laboratory techniques. It gives an overview of recombinant DNA technology and biotechnology applications utilising genetic manipulation. It also provides practical experience of the major analytical techniques used in bioinformatics. It also deals with basic structure and life cycle of different types of viruses and explains different terminologies like cancer, prions, viriods and their mechanism. This course will help students to build on the basic information regarding DNA structure transcription, translation and genetic code that they have gained in S. Y.B.Sc.

Learning Outcomes:

- a) Understand the molecular mechanism involved in DNA replication
- b) Understand how to identify and classify mutations in DNA followed by mechanism of DNA repair
- c) Understand basic concepts of homologous recombination and genetic exchange among prokaryotes
- d) Understand natural plasmids and transposons present in prokaryotes
- e) Understand an account of prokaryotic gene structure and the mechanisms controlling gene expression

Course Code	Title	Lectures/ Semester	Notional Periods
SIUSMIC51	MICROBIAL GENETICS	2.5 Credits 60Lectures	Self Study (60)
	UNIT I <u>DNA REPLICATION</u> 1.1. Historical perspective— conservative, dispersive, semi-conservative, Bidirectional and	15L	15
	semi- discontinuous 1.2. Prokaryotic DNA replication – Details of molecular mechanism involved in Initiation,	4L	
	Elongation nd Termination 1.3. Enzymes and proteins associated with DNA	4L	
	replication - primase, helicase, topoisomerase, SSB, DNA polymerases, ligases, Ter and Tus proteins	4L	
	1.4. Eukaryotic DNA replication Molecular details of DNA synthesis, replicating the ends of the	2L	
	chromosomes 1.5. Rolling circle mode of replication	1L	
	UNIT II <u>MUTATION AND REPAIR</u> 2.1. Mutation	15 L	15
	2.1.a. Terminology: alleles, homozygous, heterozygous, genotype, phenotype, Somatic mutation, Germline mutation, Gene mutation, Chromosome mutation, phenotypic lag, hotspots and mutator genes	2L	
	2.1. b. Fluctuation test.	1L	
	2.1. c. Types of mutations : Point mutation, reverse mutation, suppressor mutation, frameshift mutation, conditional lethal mutation, base pair substitution, transition, transversion, missense mutation, nonsense mutation, silent mutation, neutral mutation, pleiotropic mutations.	2L	

SIUSMIC-51: MICROBIAL GENETICS

2.1.d. Causes of mutation: Natural/spontaneous	5 L	
mutationreplication error, depurination,		
deamination. Induced mutation: principle and		
mechanism with illustrative diagrams for –		
i. Chemical mutagens- base analogues, nitrous		
acid, hydroxyl amine, intercalating agents and		
alkylating agents.		
ii. Physical mutagen		
iii. Biological mutagen(only examples)	1L	
2.1. e. Ames test		
2.2 DNA Repair	4 L	
a. Mismatch repair		
b. Light repair		
c. Repair of alkylation damage		
d. Base excision repair		
e. Nucleotide excision repair		
f. SOS repair		
UNIT III <u>GENETIC EXCHANGE</u>	15L	15L
3.2.a. Transformation	4L	
i. Introduction and History		
ii. Types of transformation in prokaryotes-		
Natural transformation in Streptococcus		
pneumoniae, Haemophilus influenzae,		
and Bacillus subtilis		
iii. Mapping of bacterial genes using		
transformation.		
iv. Problems based on transformation		
3.2.b. Conjugation	5L	
i. Discovery of conjugation		
in bacteria		
ii. Properties of F plasmid/Sexfactor		
iii. The conjugation machinery		
iv. Hfr strains, their formation and mechanism		
of conjugation		
v. F' factor, origin and behavior of F'		
strains, Sexduction.		
vi. Mapping of bacterial genes using		
conjugation (Wolman and Jacob		
experiment).		
vii. Problems based on conjugation		

 3.2.c. Transduction Introduction and discovery Generalised transduction Use of Generalised transduction for mapping genes Specialised transduction 	3L	
Unit IV: <u>TRANSCRIPTION, GENETIC CODE</u> <u>AND TRANSLATION</u>	15L	
4.1 Transcription in Eukaryotes - Eukaryotic RNA polymerase, Transcription of protein- coding genes by RNA polymerase II, Transcription initiation, The structure and production of Eukaryotic mRNAs, Production of mature mRNA in Eukaryotes, Processing of Pre-mRNA to mature mRNA. Self Splicing of Introns, RNA editing	6L	
4.2 Genetic code - Nature of genetic code and characteristics of genetic code, wobble hypothesis and problems based on genetic code.	3L	
4.3 Translation process - Transfer RNA, structure of tRNA, tRNA genes, Recognition of the tRNA anticodon by the mRNA codon, Adding of amino acid to tRNA, Ribosomal RNA and Ribosomes, Ribosomal RNA Genes, Initiation of translation, Initiation in Bacteria, Initiation in eukaryotes, Elongation of the polypeptide chain, termination of translation, protein sorting in the cell.	6L	

SIUSMIC-52 (Medical Microbiology and Immunology: Part-I)

Learning objectives:

One of the most important areas of microbiology, medical microbiology encompasses the aetiology, transmission, pathogenesis, clinical manifestations, laboratory diagnosis, prophylaxis, and treatment of various diseases that are enlisted in the syllabus. This course will help students to build on the basic information regarding host defence mechanisms that they have gained in S.Y.B.Sc. Immunology is an integral part of Medical Microbiology and this course is designed for T.Y.B.Sc. Microbiology students and it is assumed that the students have achieved a basic understanding of Innate Immunity and Host Defence mechanisms. The course has been designed to help understand the ability of our immune system to defend against invading pathogens in a logical fashion. This includes our innate ability to defend against microorganisms (innate immunity); should this first line of defence fail, how we can fight infections (acquired immunity); if we react excessively, what price we pay (hypersensitivity); and very importantly, how we can prevent pathogens from infecting us (vaccination).

Learning Outcomes: (Medical Microbiology)

Students should be able to-

- Give details of the virulence factors and other features of the pathogen
- Correlate these virulence factors with the pathogenesis and clinical features of the disease
- Comment on the mode of transmission, epidemiology and therefore modes of prophylaxis of these diseases
- Given a few key clinical features, identify the likely causative agent.
- Comment on the methods of diagnosis of the disease.

Learning Outcomes: (Immunology)

- Conceptualize how the innate and adaptive immune responses coordinate to fight invading pathogens
- Discuss the role of antigen in initiating the immune response
- Correlate the structure and functions of immunoglobulin

SIUSMIC-52: MEDICAL MICROBIOLOGY AND IMMUNOLOGY I

Course	Title	Lectures/	Notional
Code		Semester	Periods
SIUSMIC52	MEDICAL MICROBIOLOGY AND	2.5Credits	Self Study
	IMMUNOLOGY I	(60Lectures)	(60)
	Unit I: MEDICAL MICROBIOLOGY- I	15L	15
	Study of A Few Infectious Diseases (w.r.t. Cultural		
	Characteristics of the etiological agent, pathogenesis and		
	clinical features laboratory diagnosis, treatment and		
	prevention only.		
	1. Respiratory tract infections	0T	
	i. S. pyogenes infections	8L	
	ii. Influenza		
	iii. Tuberculosis		
	<i>iv.</i> Pneumonia caused by		
	<i>K.pneumoniae and S.pneumoniae</i>		
	K.pheumoniae and S.pheumoniae		
	2. Study of urinary tract infections	3L	
	3. CNS infections		
	i. Tetanus	4L	
	ii. Polio		
	iii. Bacterial meningititis		
	UNIT II : MEDICAL MICROBIOLOGY- II	15	15
	Study of few diseases (w.r.t. Cultural characteristics of the		
	etiological agent, pathogenesis and clinical features,		
	laboratory diagnosis, treatment and prevention only)		
	2.1 Study of skin infections		
	<i>i</i> . Pyogenic skin infections caused by	7L	
	Pseudomonas and S.aureus		
	ii. Leprosy		

iii.	Fungal infections-Candidiasis,		
	Ringworm Viral Infections-		
	Herpes simplex		
2.2	Study of gastrointestinal tract	то	
infec	tions	8L	
i.	Infections due to		
	Enteropathogenic E.coli strains		
ii.	Enteric fever-Salmonella		
iii.	Shigellosis		
iv.	Rotavirus		
<i>v</i> .	Dysentery due to Entamoeba		
	histolytica, Helicobacter,		
	Campylobacter		

	UNIT III : GENERAL IMMUNOLOGY-I	15L	15
3.1 A	Antigens		
Im	nunogenicity versus antigenicity:	6L	
Co	ncepts-Immunogenicity, Immunogen, Antigencity,		
	tigen,		
-	ptens- Haptens as valuable research and diagnostic tools. etors that influence immunogenicity - Foreignness,		
Mo	lecular size, Chemical composition, Heterogeneity,		
Sus	sceptibility of antigen to be processed and presented,		
Co	ntribution of the biological system to immunogenicity		
Ger	notype of the recipient,		
Im	munogenic dosage, Route of administration. Adjuvants		
Epi	topes / antigen determinants - General concept,		
Cha	aracteristic properties of B - cell epitopes, concepts of		
seq	uential and non-sequential epitopes (with only one		
	ample each). Properties of B - cell and T - cell epitopes.		
Co	mparison of antigen recognition by T cells and Bcells		
Tyj	pes of antigens - heterophile antigens, isophile		
ant	igens, sequestered antigens, super antigens, bacterial		
and	l viral antigens		
3.2 I	mmunoglobulins	6L	
Basi	c structure, types of heavy and light chains, constant		
varia	ble regions, Immunoblobulin domains-hinge region.		
Basi	c concepts - hypervariable region, complementarity		
deter	mining regions (CDRs), framework regions (FRs) and		
their	importance.		
Imm	unoglobulin classes and biological activities -		
Imm	unogloublin G, Immunogloublin M, Immunogloublin		
А,	Immunogloublin E, Immunogloublin D, (including		
diag	rams)		
Anti	genic determinants on immunoglobulins – isotypes,	3L	
allot	ypes,idiotypes.	ЭL	
Imm	unoglobulin Superfamily		
3.3 N	Aonoclonal antibodies		
Prod	uction and application		

UNIT IV : GENERAL IMMUNOLOGY- II	15L	15
4.1 Antigen Antibody reactions	8L	
Precipitation reaction -Immunoelectrophoresis		
Agglutination reactions - haemeagglutination, bacterial		
agglutination, passive agglutination, agglutination		
inhibition.		
Radioimmunoassay (RIA), Enzyme Linked		
Immunosorbent Assay indirect, competitive and sandwich		
ELISA Immunofluorescence- Direct and indirect.		
Western blotting.	3L	
4.2 Major histocompatibility complex		
Introduction		
Three major classes of MHC encoded molecules		
The basic structure and functions of Class I and Class II		
MHC Molecules	4 L	
Peptide binding by Class I and Class II MHC molecule		
4.3 Antigen presenting cells		
Types of APC's		
Endogenous antigens: The cytosolic pathway		
Exogenous antigens: The endocytic pathway		

SIUSMIC-53 (Microbial Biochemistry Part-I)

Learning objectives:

This course is designed for T.Y.B.Sc. Microbiology students to achieve a basic understanding of solute transport and metabolism. The course has been designed to expose students to methods of studying energy generation, fermentative metabolism as well as anabolism. There has been a lot of importance attached to biochemical reactions in living cells. The student must be exposed to the mechanism of solute transport and methods to study the same. The students are already exposed to laws of thermodynamics in the lower level; however, they should be made aware of the electron transport chain in Prokaryotes and Mitochondria. ATP synthesis and anabolic mechanisms need to be explained to the students to understand the breakdown of mono, di and oligosaccharides. The students will also be exposed to the fermentative pathways and anabolic reactions.

Learning Outcomes:

- Understand the architecture of the membrane and how solute is transported inside the cell.
- Describe and explain the electron transport chains in prokaryotes and mitochondria and understand the mechanism of ATP synthesis.
- Explain bioluminescence mechanism and its significance
- Discuss the experimental aspect of studying catabolism and anabolism and the various pathways for the breakdown of carbohydrates along with reactions in amphibolic pathways.
- Describe various other pathways which produce different end products.
- Describe anabolic reactions in carbohydrate synthesis.
- Apply the concepts of energetics and catabolism in biodegradation of various substrates.

SIUSMIC-53: DETAIL SYLLABUS

Course	Title	L/	Notional
Code		Semester	Periods
SIUSM IC 53	MICROBIAL BIOCHEMISTRY:(Part- I)	2.5 Credits	Self Study
10 55		(60L)	(60)
		15	15
	UNIT I		
	BIOLOGICAL MEMBRANES and		
	TRANSPORT		
	1.1 Composition and architecture ofmembrane	02	
	1.1.1 Lipids		
	1.1.2 Integral and peripheral proteins and interactions		
	with lipids		
	1.1.3. Permeability and outer membrane- a barrier		
	1.1.4.Aquaporins		
	1.1.5. Mechanosensitive channels		
	1.2 Methods of studying solute transport	02	
	1.2.1 Using whole cells		
	1.2.2. Using Liposomes		
	1.2.3. Using Proteoliposome		
	1.3 Solute transport across membrane	08	
	1.3.1. Passive transport facilitated by membrane		
	proteins.		
	1.3.2. Transporters grouped into Superfamilies		
	1.3.3. Co transport across plasma membrane		
	(Uniport, Antiport, Symport)		
	1.3.4. Active transport and electrochemical gradient		
	1.3.5. Ion gradient provides energy for secondary		
	Active transport e.g. Lactose transport		
	1.3.6. ATPases and transport		
	1.3.7. ABC transporters e.g. Histidine transport		
	1.3.8. Shock sensitive system – Role of binding		
	proteins e.g. Maltose uptake		
	1.3.9. Phosphotransferase system		
	1.3.10.Schematic representation of various		

.4 Other examples of solute transport-	02	
Iron transport : A special problem	03	
Bacterial protein export		
1.4.3. Bacterial membrane fusion central to many		
biological processes		
UNIT II BIOENERGETICS AND	15	1
BIOLUMINESCENCE.		-
2.1. Biochemical mechanism of generating ATP-	03	
Substrate level, Oxidative, and Photo Phosphorylation		
2.2 Electron transport chain	03	
2.2.1 Universal electron acceptors that transfer electrons to		
ETC		
2.2.2. Carriers in ETC		
i. Hydrogen carriers – Flavoproteins, Quinones		
ii. Electron carriers – Iron sulphur proteins, Cytochromes		
2.2.3. Mitochondrial ETC		
i. Biochemical anatomy of mitochondria		
ii. Complexes in Mitochondrial ETC		
iii.Schematic representation of Mitochondrial ETC		
2.3 Prokaryotic ETC	03	
2.3.1. Organization of electron carriers in bacteria		
2.3.2. Generalised electron transport pathway in		
bacteria		
2.3.3. Different terminal oxidases		
2.3.4. Branched bacterial ETC		
2.3.5. Pattern of electron flow in <i>E. coli</i> - aerobic		
and anaerobic		
2.3.6. Pattern of electron flow in <i>Azotobacter vinelandii</i>		
2.4. ATP synthesis	03	
2.4.1 Explanation of terms – Proton motive force,		
Proton pump, Coupling sites, P:O ratio, Redox potential		
2.4.2. Free energy released during electron transfer		
from NADH to O _{2.}		
2.4.3. Chemiosmotic theory		
2.4.4. Structure and function of Mitochondrial ATP		

synthase (No Kinetics)	
2.4.5. Mechanism by Rotational catalysis	
2.4.6. Structure of bacterial ATP synthase	
2.4.7. Inhibitors of ETC, Inhibitors of	
ATPase, Uncouplers, Ionophores	

2.5 Other modes of generation of electrochemical energy	02	
2.5.1 ATP hydrolysis		
2.5.2 Oxalate formate exchange		
2.5.3 End product efflux, Definition- Lactate efflux		
2.5.4 Bacteriorhodopsin - Definition, Significance,		
2.5.5 Function as proton pump,		
2.6 Bioluminescence	1L	
2.6.1 Brief survey of bioluminescent systems		
2.6.2 Biochemistry of light emission		
2.6.3 Schematic diagram		
2.6.4 Significance / Application		
UNIT III: METHODS OF STUDYING METABOLISM		
AND CATABOLISM OF CARBOHYDRATES	15	15
3.1. Experimental Analysis of metabolism		10
3.1.1. Goals of the study	03	
3.1.2. Levels of organization at which metabolism		
is studied.		
3.1.3. Metabolic probes		
3.1.4. Use of radioisotopes in biochemistry		
i. Pulse labeling		
ii. Assay and study of radiorespirometry –to		
differentiate EMP and ED		
3.1.5. Use of biochemical mutants.		
3.1.6. Sequential induction technique		
3.2 Catabolism of Carbohydrates		
3.2.1 Breakdown of polysaccharides – glycogen, Starch,	10	
cellulose.		
3.2.2. Breakdown of oligosaccharides– lactose, maltose,		
sucrose, cellobiose		
3.2.3. Utilization of monosaccharides – fructose, Galactose.		
3.2.4. Major pathways-		
i. Glycolysis (EMP)		
ii.HMP Pathway and Significance of the pathway		
iii. ED pathway,		
iv. TCA cycle and Significance of the cycle		
v. Anaplerotic reactions vi. Glyoxylate bypass,		
vii. Incomplete TCA in anaerobic bacteria		
vii. incomplete TCA in anacrobic bacteria		

3.3 Amphibolic role of EMP and TCA cycle	01	
3.4 Energetics of Glycolysis, ED and TCA pathway – Balance sheet only(No efficiency calculation)	01	
UNIT IV FERMENTATIVE PATHWAY AND ANABOLISM OF CARBOHYDRATES	15	15
 4.1 Fermentative pathways (With structures and enzymes) 4.1.1. Lactic acid fermentation – i. Homofermentors ii. Heterofermentors iii. Bifidobacterium pathway (Schematic) 4.1.2. Alcohol fermentation 	04	
i. by ED pathway in bacteria ii. by EMP in yeasts		
 4.2 Other modes of fermentations in microorganisms 4.2.1 Mixed acid, 4.2.2 Butanediol 4.2.3. Butyric acid 4.2.4. Butanol-acetone 4.2.5. Propionic acid (Acrylate pathway and succinate propionate pathway) 	05	
 4.3 Anabolism of Carbohydrates 4.3.1. General pattern of metabolism leading to synthesis of a cell from Glucose 4.3.2. Gluconeogenesis (Mitochondrial aspect not included) 4.3.3. Biosynthesis of Glycogen 4.3.4. Biosynthesis of Peptidoglycan 	06	
(Mitochondrial aspect not included) 4.3.3. Biosynthesis of Glycogen		

SIUSMIC-54 (BIOPROCESS TECHNOLOGY)

Learning Objectives

Bioprocess Technology and Environmental Microbiology course is designed to develop the learner's ability to study the techniques used in the different phases of industrial microbiology such as strain improvement, basic fermentation equipment and its sterilization aspects. It gives an in depth focus of the different types of fermenters used in industry for production of different products, and also emphasizes its process parameters. It includes the principles and describes the main steps and processes in the industrial production of beverages and enzymes. The downstream process and the environmental aspects of the final product are also included.

Industrial and Environmental Microbiology becomes an important application based paper covering microbial fermentations as well as applying the techniques of molecular biology to enzyme technology, animal tissue culture as well as plant tissue culture. Thus, it becomes a laboratory to market scenario where the entire products reach. The learner is provided with the details of productions of important products like antibiotics, vitamins, organic acid and enzymes along with the analysis techniques using various instruments and statistical tools.

The learner is expected to learn the need of Quality management and regulatory bodies as the products need to fulfill these requirements. Thus this paper readies the learner to understand and apply the knowledge of fermentation technology and related products.

This course aims to enable graduates to enter industry with an appropriate level of understanding of the need for both the science and business aspects to be achievable to make a viable product and enhance their enterpreunial skills.

Learning Outcomes:

- Describe the applications of microbes and its strain improvement in Industrial Microbiology.
- Apply kinetic formula to determine growth and productivity parameters of batch and continuous fermentations
- Describe the design of bioreactors for different applications and its process parameters
- Design media, growth conditions and techniques for producing and recovering different types of products of commercial value
- Design an industrial process by keeping in view the strict guidelines for its recovery and disposal
- Learner will be well –versed with the environmental aspects such as carbon credits and containment levels.
- Learn to develop the corrective measures for dealing with the environmental pollution and its consequences.

Course Code	Title	L/ Semester	Notional Periods
SIUSMIC 54	BIOPROCESS TECHNOLOGY	2.5 CREDITS (60 L)	Self Study (60)
	Unit I: <u>Strain Improvement and sterilization</u> <u>Techniques</u>	15	
	1.1 Strain improvement of industrial	10L	
	 microorganisms i. selection of mutants with altered permeability ii. isolation of mutants not producing feedback inhibitors/repressors (all methods- le.g. only) 		
	iii. Use of auxotrophs for production of primary metabolites- e.g. aspartate family		
	 iv. The selection of induced mutants synthesizing improved levels of primary metabolites. v. Isolation of induced mutants for secondary metabolites. 		
	vi. isolation of mutants that do not recognize the presence of inhibitors and repressors with e.g. (gradient plate – lysine)		
	vii. isolation of auxotrophic mutants (e.g. – Penicillin Davies and miniature technique)		
	viii. Isolation of resistant and revertant mutants1.2 Sterilization and achievement of aseptic	5L	
	conditions		
	i. Introduction Medium sterilization (concept of nabla factor)		
	ii. Methods of batch sterilization		
	iii. The design of continuous sterilization processiv. Sterilization of air and gasses		

SIUSMIC-54: DETAIL SYLLABUS

UNIT II FERMENTER EQUIPMENT AND CONTROL	15L	15
2.1 Design of fermenter a) Scale Up, Basic functions of fermenter. Aseptic operation and Containment, Body construction, Aeration and agitation Agitators, Stirrer glands and bearing, Mechanical seals (Names andFunctions, no diagrams), Magnetic Drive, - Baffles, Sparger: porous, orifice; nozzle; combined. Valves / Steam traps function in general and examples.	10L	
b) Types of fermenters: Acetator, Cavitator, Tower fermenter, Cylindro-conical, Air lift – outer loop / inner loop, Deep jet, Cyclone column, Packed tower (generator), Rotating disc, Bubble cap.		
2.2 Instrumentation and Control of variables Introduction, Types of sensors, Sensing and Control of pH, temp, Dissolved oxygen, Flow measurement andcontrol, Pressure, Inlet / Exit gas analysis, Foam sensing, Oxygen.	5L	
UNIT III DOWNSTREAM PROCESSING AND ENVIRONMENTAL ASPECTS	15L	15
 3.1 Downstream processing Recovery and Purification of fermentation products ii. Introduction, Precipitation, Filtration - theory, filter-aids, batch filters(Plate and frame filters), continuous filters. (Rotary 	10L	
 vaccum),Centrifugation flocculating agent, range of centrifuges - Basket, tubular bowl. iii. Cell disruption: Physico-chemical. iv. Liquid – Liquid extraction, Solvent recovery, v. Chromatography –Ion exchange and Adsorption vi. Membrane processes – Ultrafiltration, reverse osmosis, liquid membranes. 		
vii.Drying , Crystallizationviii.Whole broth processing.		

3.2 .Environmental aspects	5L	
i. Effluent treatment		
ii. Carbon Credits – Environmental		
Degradation issues and challenges		

UNIT IV TRADITIONAL INDUSTRIAL FERMENTATIONS PART-I	15	
4.1 Beer – Ale and Lager	3L	
4.2 Wine – Red and white and Champagne	3L	
4.3 Vinegar (acetator and Generator)	3L	
4.4 Alcohol from molasses	2 L	
4.5 Baker's yeast	2 L	
4.6 Fungal amylase by solid substrate fermentation	2 L	

T.Y.B.SC. MICROBIOLOGY PRACTICALS (SEMESTER-V)

COURSE CODE: SIUSMICP51 [PRACTICALS BASED ON SIUSMIC51, CREDITS -1.5L- 60, NOTIONAL PERIODS-15]

- 1. UV survival curve determination of exposure time leading to 90% reduction
- 2. Isolation of mutants using UV mutagenesis
- 3. Replica plate technique for selection and characterization of mutants auxotroph and antibiotic resistant
- 4. Isolation and detection of plasmid DNA.
- 5. Preparation of competent cells and transformation

COURSE CODE: SIUSMICP52

[PRACTICALS BASED ON SIUSMIC52, CREDITS -1.5L-60, NOTIONAL PERIODS-15]

- 1. Study of iron sequestration- siderophore production in *Pseudomonas* spp.
- 2. Acid fast staining of *M.tuberculosis*.
- 3. To determine SLO and SLS activity of S.pyogenes
- 4. Identification of isolates obtained from nasal swabs, skin swab, pus, sputum, stool and urine by morphological, cultural and biochemical properties.
- 5. Antigen Preparation: O and H antigen preparation of *Salmonella*. Confirmation by slide agglutination
- 6. Study of germ tube formation in yeast Candida albicans
- 7. Demonstration experiments- Widal

COURSE CODE: SIUSMICP53

[PRACTICALS BASED ON SIUSMIC53; CREDITS-1.5, L- 60, NOTIONAL PERIODS-15]

- 1. Isolation and study of Bioluminescent organisms
- 2. Study of oxidative and fermentative metabolism
- 3. Qualitative and Quantitative assay of Phosphatase
- 4. Detection of organic acids by TLC
- 5. Study of Homo and Heterofermentation
- 6. Glucose detection by GOD/POD
- 7. βgalactosidase activity

COURSE CODE: SIUSMICP54

[PRACTICALS BASED ON SIUSMIC54, CREDITS -1.5, L- 60, NOTIONAL PERIODS-15]

- 1. Alcohol fermentation.
 - a) Efficiency of fermentation
 - b) Alcohol tolerance for yeast.
 - c) Sugar tolerance for yeast.
 - d) Chemical estimation –Sugar by Cole's method
 - e) Chemical estimation-Alcohol
- 2. Gradient plate technique for analogue resistant mutants.
- 3. Production of amylase- detection, shake flask or solid substrate cultivation and estimation. (Qualitative)
- 4. Industrial visit

SEMESTER V: TEXT BOOKS AND REFERENCE BOOKS

SIUSMIC51: Text books

- 1. Benjamin A. Pierce (2008), "Genetics a conceptual approach", 3rd ed., W. H. Freeman and company.
- 2. D, Nelson and M.Cox, (2005), "Lehninger's Principles of biochemistry", 4th ed., Macmillan worth Publishers.
- 3. Fairbanks and Anderson, (1999), "Genetics", Wadsworth PublishingCompany.
- 4. M.Madigan, J.Martinko, J.Parkar, (2009), "Brock Biology of microorganisms", 12th ed., Pearson Education International.
- 5. Nancy Trun and Janine Trempy, (2004), "Fundamental bacterial genetics", Blackwell Publishing
- 6. Peter J. Russell (2006), "Genetics-A molecular approach", 2nded.
- 7. Prescott, Harley and Klein, "Microbiology", 7th edition Mc Graw Hill international edition.
- 8. R. H. Tamarin, (2004), "Principles of genetics", Tata McGrawHill.
- 9. Robert Weaver, "Molecular biology", 3rd edn. Mc Graw Hill international edition.
- 10. Snustad, Simmons, "Principles of genetics", 3rdedn. John Wiley and sons,Inc.

SIUSMIC51: Reference books:

- 1. Benjamin Lewin, "Genes IX", , Jones and Bartlett publishers.
- 2. JD Watson, "Molecular biology of the gene" 5thedn.

SIUSMIC52: Text books:

- 1. Ananthanarayan and Panicker's, Textbook of Microbiology, 9thedition
- 2. Bacterial Pathogenesis A molecular approach Abigail Salyer And Dixie Whitt 2nd Ed ASM press
- 3. Fahim Khan, Elements of Immunology, Pearson Education
- 4. Jawetz, Melnick and Adelberg's Medical Microbiology, 26th Edition, Lange publication
- 5. Kuby Immunology, 6th Edition, W H Freeman and Company
- Pathak and Palan, Immunology: Essential and Fundamental, 1stand 3rd Edition, Capital Publishing Company

SIUSMIC52: Reference books / Internet references:

- 1. Baron Samuel , Medical Microbiology, 4thedition
- 2. http://www.macmillanlearning.com/catalog/static/whf/kuby/
- 3. http://www.ncbi.nlm.nih.gov/books/NBK7627/
- 4. Kuby Immunology, 7th Edition, W H Freeman and Company

SIUSMIC53: Text books:

- 1. Conn, E.E., P. K.Stumpf, G.Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley and Sons. New York.
- 2. Gottschalk,G., (1985), Bacterial Metabolism, 2nd edition, SpringerVerlag
- 3. Mathews, C.K., K.E. van Holde, D.R. Appling, S,J, Anthony-Cahill (2012) Biochemistry, 4thedn.Pearson
- 4. Nelson D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry.4th edition, W.H. Freeman and Company
- 5. Rose, A.H. (1976) Chemical Microbiology, 3rdedn Butterworth-Heinemann
- Stanier, R. Y., M. Doudoroffand E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd
- 7. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press
- 8. Wilson and Walker, 4th edn
- 9. Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers

SIUSMIC53: Reference books:

- 1. Cohen, G.N. (2011). Microbial Biochemistry. 2nd edn, Springer
- 2. Zubay, G. L (1996), Principles of Biochemistry, Wm. C. Brown publishers

SIUSMIC54: Text books

- 1. Casida L. E., "Industrial Microbiology"(2009) Reprint, New Age International (P) Ltd, Publishers, New Delhi
- 2. Environmental degradation : issues and challenges by Shitole and Sable, Global research publication(2012)
- 3. H. A. Modi, (2009). "Fermentation Technology" Vols 1 and 2, Pointer Publications, India
- 4. Okafor Nakuda (2007) ''Modern Industrial Microbiology and Biotechnology'', Science Publications Enfield, NH, USA.
- 5. Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1 and 2, Academic Press
- 6. Stanbury P. F., Whitaker A. and HaII--S. J., (1997), "Principles of Fermentation Technology", 2nd Edition, Aditya Books Pvt. Ltd, NewDelhi.

SIUSMIC54: Reference books

- 1. Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- 2. Prescott and Dunn's 'Industrial Microbiology''(1982) 4th Edition, McMillan Publishers

T. Y. B. Sc. MICROBIOLOGY THEORY SEMESTER-VI

COURSE CODE	TITLE	CREDITS AND L/SEM
SIUSMIC61	rDNA TECHNOLOGY, BIOINFORMATIC AND VIROLOGY	2.5 (60 L)
Unit I	RECOMBINANT DNA TECHNOLOGY	15 L
Unit II	BASIC TECHNIQUES IN MOLECULAR BIOLOGY AND BIOINFORMATICS	15 L
Unit III	VIROLOGY I	15 L
Unit IV	VIROLOGY II	15 L
SIUSMIC62	MEDICAL MICROBIOLOGY AND IMMUNOLOGY II	2.5 (60 L)
Unit1	MEDICAL MICROBIOLOGY III	15 L
Unit II	CHEMOTHERAPY	15 L
Unit III	IMMUNOLOGY III	15 L
Unit IV	IMMUNOLOGY IV	15 L
SIUSMIC63	MICROBIAL BIOCHEMISTRY : PART II	2.5 (60 L)
Unit I	LIPID METABOLISM AND CATABOLISM OF HYDROCARBONS.	15 L
Unit II	METABOLISM OF PROTEINS AND NUCLEIC ACIDS	15 L
Unit III	METABOLIC REGULATION	15 L
Unit IV	PROKARYOTIC PHOTOSYNTHESIS AND INORGANIC METABOLISM	15 L
SIUSMIC64	APPLIED AND INDUSTRIAL MICROBIOLOGY	2.5 (60 L)
Unit I	TRADITIONAL INDUSTRIAL FERMENTATIONS PART 2	15 L
Unit II	ADVANCES IN BIOPROCESSES TECHNOLOGY:	15 L
Unit III	BIOINSTRUMENTATION AND BIOSTATISTICS	15 L
Unit IV	QUALITY ASSURANCE AND REGULATORY PRACTICES	15 L

SIUSMIC-601 (rDNA TECHNOLOGY, BIOINFORMATICS AND VIROLOGY)

Learning Objectives

Microbial Genetics is an undergraduate T.Y. B.Sc. Microbiology course that deals with both conceptual and practical tools for generating, processing and understanding biological genetic information. It develops knowledge of the underlying theories of genetics which exhibits a broad understanding of genetic exchange among prokaryotes. It also gives students hands-on competence in fundamental molecular biology theories and laboratory techniques. It gives an overview of recombinant DNA technology and biotechnology applications utilizing genetic manipulation. It also provides practical experience of the major analytical techniques used in bioinformatics. It also deals with basic structure and life cycle of different types of viruses and explains different terminologies like cancer, prions, viriods and their mechanism.

Learning Outcomes

- 1. Understand the basic concepts and techniques of recombinant DNA technology
- 2. Understand the basic concepts of Bioinformatics.
- 3. Understand the basic structure, classification, enumeration, cultivation and life cycle of viruses
- 4. Understand the terms like cancer, prions, viriods and their mechanisms
- 5. Understand regulation of lambda phage

Course Code	Title	L/ Semester	Notional Periods
SIUSMIC6	RECOMBINANT DNA TECHNOLOGY,	2.5 Credits	Self
01	BIOINFORMATICSandVIROLOGY	(60 L)	Study (60)
	UNIT I		
	RECOMBINANT DNA TECHNOLOGY	15	15
	1. 1 Recombinant DNA technology:	3L	
	 Site specific mutagenesis of DNA, Uses of DNA polymorphism, STRS and VNTRS,DNA molecular testing for human genetic diseases(Only RFLP),DNA typing, gene therapy, Genetic engineering of plants and Animals. 		
	1.2 Basic steps in Gene Cloning.	1L	
	1.3 Cutting and joining DNA molecules Restriction and modification systems, restriction endonucleases, DNA ligases	2L	
	 1.4 Vectors Plasmids as cloning vectors. The plasmid vectors, pBR322 vector Cloning genes into pBR322 Phage as cloning vectors, cloning genes into phage vector 	4L	
	iv. Cosmidsv. Shuttle vectors- YAC, BAC		
	1.5 Methods of artificial transformation	2L	
	1.7.Screening and selection methods for identification and isolation of recombinant cells	3L	

SIUSMIC-61: DETAIL SYLLABUS

UNIT II <u>BIOLOGY AND</u> <u>BIOINFORM</u>	MOLECULAR 15L	15
2.1 Molecular Biology Technique i. Southern, Northern and We ii. Autoradiography (explain t	estern blotting.	5L
iii. PCR- basic PCR and differ (Reverse transcriptase PCR PCR)	••	
 2.2 Bioinformatics A. Introduction i. Definition, aims, tasks and Bioinformatics ii. Database, tools and their us iii. Types and classification of iv. Nucleic acid sequence data GenBank, GSDB, Ensembl Genomic resources. v. Protein sequence databases TrEMBL NRL-3D.Protein SCOP, CATH, PROSITE, 1 KEGG. 	applications of ses databases bases-EMBL, DDBJ, and specialized -PIR, SWISS-PROT, structure databases-	лL
 B. Brief introduction to Transe Pharmacogenomics, i. Phylogenetic analysis, Phylogenetic analysis, Phylogenetic analysis, Phylogenetic analysis, Phylogenetic and spectrum of the second se	logenetic tree, al v/s LAST. ional	SL
UNIT III <u>BASIC VIROLOGY</u>	1:	5L 15
3.1. Viral architecture- Capsid, viral genome and envelope of TMV, T4, Influenza virus, HIV.	Siluciule	IL .

3.2 V	Viral classification (Baltimore)	2L	
3.3 1	The viral replication cycle- attachment, penetration,		
unco	ating, types of viral genome and their replication,	4L	
assei	nbly, maturation and release.		
3.4 (Cultivation of viruses- cell culture techniques,		
emb	yonated egg, laboratory animals, Cell culture		
meth	ods: Equipment required for animal cell culture,	5L	
Isola	tion of animal tissue		
	UNIT IV	15L	15
	ADVANCED VIROLOGY		
4.1 I	Life cycle of animal virus:- Influenza, HIV, Polio		
4.2 I	ife cycle of Plant viruses:-TMV	5L	
4.3 V	visualization and enumeration of virus particles		
4.4 A	A) Measurement of infectious units		
i.	Plaque assay	3L	
ii.	Fluorescent focus assay		
iii.	Infectious center assay		
iv.	Transformation assay		
v.	Endpoint dilution assay.		
4.4 I	B) Measurement of virus particles and their		
com	ponents		
i.	Electron microscopy		
ii.	Atomic force microscopy		
iii.	Haemagglutination Measurement of viral enzyme activity.		
iv.			1

4.3 Regulation of lytic and lysogenic pathway of	3L
lambda phage	
I.4 Role of viruses in cancer	2L
Definitions, Characteristics Of Cancer Cell, Cancer Multi	
Step Process, Human DNA Tumor Viruses- EBV,	
Kaposi's Sarcomavirus, Hepatitis B And C Virus,	
Papilloma Virus	
	2L
1.5 Prions and viroids	

SIUSMIC-62 (MEDICAL MICROBIOLOGY and IMMUNOLOGY-II)

Learning objectives:

One of the most important areas of microbiology, medical microbiology encompasses the aetiology, transmission, pathogenesis, clinical manifestations, laboratory diagnosis, prophylaxis, and treatment of various diseases that are enlisted in the syllabus. This course will help students to build on the basic information regarding host defence mechanisms that they have gained in F.Y.BSc.

Immunology is an integral part of Medical Microbiology and this course is designed for T.Y.B.Sc. Microbiology students and it is assumed that the students have achieved a basic understanding of Innate Immunity and Host Defence mechanisms. The course has been designed to help understand the ability of our immune system to defend against invading pathogens in a logical fashion. This includes our innate ability to defend against microorganisms (innate immunity); should this first line of defence fail, how we can fight infections (acquired immunity); if we react excessively, what price we pay (hypersensitivity); and very importantly, can we prevent pathogens from infecting us (vaccination).

Learning Outcomes: (Medical Microbiology)

Students should be able to-

- Give details of the virulence factors and other features of the pathogen
- Correlate these virulence factors with the pathogenesis and clinical features of the disease
- Comment on the mode of transmission, epidemiology and therefore modes of prophylaxis of these diseases
- Given a few key clinical features, identify the likely causative agent.
- Comment on the methods of diagnosis of the disease.

Learning Outcomes: (Immunology)

- Understand the effector responses- Humoral Immunity and Cell Mediated Immunity and differentiate between them
- Acquire an understanding of the role of immune system in disease:
- Unregulated response resulting in Hypersensitivity
- Apply the concept of immunity to prevention of disease by development of vacc

SIUSMIC-62: DETAILSYLLABUS

Course Code	Title	L/ Semester	Notional Periods
SIUSMIC 602	MEDICAL MICROBIOLOGY AND IMMUNOLOGY II	2.5 Credits (60L)	Self Study (60)
	UNIT IMEDICAL MICROBIOLOGY IIIStudy of a few diseases with emphasis oncultural characteristics of the aetiologicalagent, pathogenesis, laboratory diagnosisand prevention.	15	15
	1. Study of vector-borne infections -Malaria	02	
	 Study of vector-bonne infections -ivialana Study of sexually transmitted infectious diseases -Syphilis, AIDS, Gonorrhoea 	08	
	 Study of emerging infections- Dengue, chikungunya, leptospirosis 	05	
	UNIT II <u>CHEMOTHERAPY</u>	15	15
	2.1.Attributes of an ideal chemotherapeutic agent and related definitions2.2 Selection and testing of antibiotics for bacterial isolates by Kirby-Bauer method	03	
	 Mode of action of antibiotics on- i. Cell wall (Beta-lactams- Penicillin and ii. Cephalosporins, Carbapenems) iii. Cell Membrane (Polymyxin and Imidazole) iv. Protein Synthesis (Streptomycin, v. Tetracycline and Chloramphenicol) vi. Nucleic acid (Quinolones, Nalidixic acid, Rifamyicn) vii. Enzyme inhibitors (Sulfa drugs, Trimethoprim) viii. List of common antibiotics used for treating viral, fungal and parasitic diseases. ix. New generation antibiotics 	09	

2.3 Mechanisms of drug resistance- Its evolution, pathways, origin and prevention	03	
---	----	--

	UNIT III	15L	15
I	MMUNOLOGY – III		
	1. Tcells	47	
i	. T Cell Receptor-structure (alpha-beta,	4L	
	gamma-delta TCR)		
ii	. TCR-CD ₃ complex - structure and		
	functions. Accessory molecules		
iii	. T cell activation		
iv	TCR mediated signaling –Overview		
	Costimulatory signals		
v	Superantigens induced T cell activation		
vi	. T cell differentiation (Memory and Effector		
	cells)		
		3L	
	2. Cell mediated effector	JL	
	response		
i	. General properties of effector		
	Tcells Cytotoxic Tcells and		
	destruction of		
ii	. Target cel by perforin/granzyme pathway	4L	
	and Fas pathway		
iii	. Killing mechanism of NK cells		
iv	Antibody mediated cell cytotoxicity (ADCC)		
	3. B cells		
i	. B cell receptor and co-receptor-		
	structure and function		
ii	. B cell activation and Differentiation		
iii	. Thymus dependant and independent		
	antigens Signal transduction pathway		
	activated by BCR- overview		
iv	Role T_H cell in B cell response-Formation of	4 L	
	T-B conjugates, CD40/CD40L interaction,		
	T _H cells cytokine signals.		
	4. Humoral Response		
	. Primary and secondary responses		
ii			
	Humoralresponse Germinal centers		
	and antigen induced B cell		
	Differentiation		

iii.	Cellular events within germinal centers- Overview Affinity maturation, somatic hyper-mutation and class switching		
iv.	Generation of plasma cells and memory cells		

IN	UNIT IV IMUNOLOGY IV	15L	15
1 i. ii. ii. iv.	 Vaccines Active and passive immunization Types of vaccines - Killed and attenuated vaccines, Whole organism vaccines, Purified macromolecules as vaccines, recombinant viral vector vaccines, DNA vaccines Use of adjuvants in vaccine New vaccine strategies 	4 L	
2 i.	 Immunohaematology Human blood group systems, ABO, secretors and non secretors, Bombay Blood group. Rhesus system and list of other blood group systems Haemolytic disease of newborn, Coombs test. 	3L	
3	. Complement System- classical, alternative, lectin induced pathway	3L	
4 i.	• Hypersensitivity, Coombs and Gells classification Type I to Type IV examples of each type of hypersensitivity	3L	

SIUSMIC-63 (MICROBIALBIOCHEMISTRY: PART-II)

Learning objectives:

There are a large number of macromolecules such as lipids, carbohydrates, proteins and nucleic acids which are catabolised by the living cells. Cells also bring about biosynthesis of these macromolecules. Various enzymes play a major role in these biochemical reactions. These enzymatic reactions are regulated. The learner must be made aware of the mechanisms of catabolism, anabolism as well as the regulation of this mechanism in the living cell. There are prokaryotic cells which bring about photosynthesis to generate energy. Prokaryotic cells are also involved in metabolism of inorganiccompounds.

This course is designed for TYBSc Microbiology students and it is assumed that the students already have a basic understanding of macromolecules. The course will help students to understand the metabolism of macromolecules as well as the regulation of metabolic reactions. The students would also learn photosynthetic reactions in prokaryotic cells and metabolism of inorganic compounds.

Learning Outcomes: Students should be able to-

- Understand the reactions involved in metabolism of lipids and hydrocarbons.
- Describe and explain protein catabolism as well as anabolic processes in the cell.
- Explain nucleic acid metabolism and recycling of nucleotides.
- Discuss the mechanism of regulation with regards to allosteric proteins, gene expression as well as through other mechanisms like end product inhibition and covalent modification.
- Describe prokaryotic photosynthesis with respect to photosynthetic pigments, photochemical apparatus and light and dark reactions.
- Describe metabolism of inorganic compounds and Lithotrophy

SIUSMIC-63 : DETAIL	L SYLLABUS
---------------------	------------

Course Code	Title	L/ Semester	Notional Periods
SIUSMIC 63	MICROBIAL BIOCHEMISTRY PART II	2.5 Credits (60L)	Self Study (60)
	UNIT I LIPID METABOLISM AND CATABOLISM OF HYDROCARBONS	15	15
	 1.1 General introduction to Lipids 1.1.1. Lipids and their functions 1.1.2. Action of lipases on triglycerides /tripalmitate 1.1.3. Phospholipids and their properties 1.1.4. Common phosphoglycerides in bacteria 	02	
	 1.2 Catabolism of Lipids 1.2.1.Oxidation of saturated fatty acid β oxidation pathway Energetics of β oxidation of Palmitic acid 1.2.2. Oxidation of propionic acid. 1.2.3. Degradation of poly beta hydroxy butyrate 	05	
	 1.3 Anabolism of Lipids 1.3.1. Biosynthesis of straight chain even carbon Saturated fatty acid (palmitic acid) 1.3.2. Biosynthesis of phosphoglycerides in bacteria 1.3.3. Biosynthesis of PHB 	06	
	 1.4 Catabolism of aliphatic hydrocarbons 1.4.1. Oxidation of saturated aliphatic Hydrocarbon (n-alkane) 1.4.2. Omega oxidation pathway- i)Pathway in <i>Corynebacterium</i> and yeast ii)Pathway in <i>Pseudomonas</i> 	02	

	UNIT II	15	15
ME	TABOLISM OF PROTEINS AND NUCLEIC		
	ACIDS		
2.1 Pr	otein catabolism		
i.	Enzymatic degradation of proteins	05	
ii.	Metabolic fate of amino acids (schematic only)		
iii.	Metabolism of single aminoacids		
iv.	Deamination reactions		
v.	Decarboxylation		
vi.	Transamination		
vii	Fermentation of single amino acid - Glutamic		
	acid by Clostridium glutamicum		
vii	i. Fermentation of pair of amino acids -Stickland		
	reaction		
22 41	nabolism of aminoacids	04	
i.	Schematic representation of amino acid	04	
1.	families		
ii.	Synthesis of amino acids of Aspartate family		
11.	Synthesis of annio acids of Asparate family		
2.3 Ni	ıcleic acid Catabolism	03	
i.	Degradation of purine nucleotides up to		
	uric acid formation		
ii.	Recycling of purine and pyrimidine		
	nucleotides by salvage pathway		
2.4 Ar	nabolism of Nucleic Acids	03	
i.	Metabolic origin of atoms in purine and	05	
	Pyrimidine ring.		
ii.	Biosynthesis of pyrimidine nucleotides.		
iii.	Biosynthesis of purine nucleotides.		
iv.	Formation of deoxyribonucleotides.		
v.	Synthesis of nucleotide diphosphates and		
	triphosphates.		
vi.	Role of nucleotides (high energy		
	triphosphates)		

	UNIT III	15	15
	METABOLIC REGULATION		
Over	view and major modes of regulation	01	
Exam	ples of cellular control mechanism acting at		
	us levels of metabolism (tabulation only)		
		02	
3.1 A	llosteric proteins	03	
i.	Definition		
ii.	Allosteric enzymes - Role of allosteric		
	enzymes using ATCase as example (no kinetic study)		
iii	. Regulatory allosteric proteins		
	. Interaction of proteins with DNA		
v.			
vi	. Examples - Lac repressor, Trp repressor, CAP protein		
	i. Definition and examples of alarmones		
3.2 R	egulation of gene expression (Transcription)		
	luction to operon model		
	non patterns of regulation of transcription -	06	
	al concept of positive and negative regulation of		
opero	ns		
i.	Lac operon -Mechanism of regulation –		
	Induction,		
ii.	Catabolite repression		
iii.	Trp operon - End Product Repression,		
	Attenuation.		
iv.	Multiple Sigma Factors		
v.	Riboswitches		
	egulation of enzyme activity	04	
	translational regulation)		
End-l	Product Inhibition and Mechanism of End		
Produ	tet Inhibition in branched pathways with		
exam	ples		
i.	Isofunctional enzymes		
ii.	Concerted feedback inhibition		
11.			
iii.	Sequential feedback inhibition		
	Cumulative Feedback inhibition		

Covalent modification of enzymes		
i. General examples without structures	01	
ii. Monocyclic cascade and interconvertable enzyme definition		
iii. Glutamine synthetase system of E.coli		
3.4. Regulation by proteolytic cleavage		
3.5 Regulation of EMP and TCA		
(Schematic and Role of Pyruvate dehydrogenase Complex)		

UNIT IV PROKARYOTIC PHOTOSYNTHESIS AND INORGANIC METABOLISM	15L	15L
4.1 Prokaryotic photosynthesis	09	
4.1.1 Early studies on photosynthesis		
i. Light and dark reactions		
ii. Bacterial photosynthesis		
iii. Hill reaction		
4.1.2. Phototrophic prokaryotes -Oxygenic, Anoxygenic		
phototrophs examples only		
4.1.3.Photosynthetic pigments		
4.1.4.Location of photochemical apparatus		
4.1.5.Photophosphorylation- Light reactions in		
i. Purple photosynthetic bacteria		
ii. Green sulphur bacteria		
iii. Cyanobacteria (with details)		
4.1.7.Dark reaction	03	
i. Calvin Benson cycle		
ii. Reductive TCA		
4.2 Inorganic Metabolism		
A) Assimilatory pathways-		
i. Assimilation of nitrate,	02	
ii. Ammonia fixation – Glutamate dehydrogenase,	-	
Glutamine synthetase, GS-GOGAT,		
Carbamoyl phosphate synthetase		
iii. Biological nitrogen fixation (Mechanism for		
N ₂ fixation and protection of nitrogenase)		
iv. Assimilation of sulphate		
B) Dissimilatory pathways-		
i. Nitrate as an electron acceptor		
(Denitrification in <i>Paracoccus denitrificans</i>)		
ii. Sulphate as an electron acceptor		
4.3. Lithotrophy–	01	
i. Enlist organisms and products	01	
formed during oxidation of Hydrogen, carbon		
monoxide, Ammonia, Nitrite, Sulphur, Iron.		

SIUSMIC-64 (APPLIED and INDUSTRIAL MICROBIOLOGY)

Learning Objectives

Bioprocess Technology and Environmental Microbiology course is designed to develop the learner's ability to study the techniques used in the different phases of industrial microbiology such as strain improvement, basic fermentation equipment and its sterilization aspects. It gives an in depth focus of the different types of fermenters used in industry for production of different products, and also emphasizes its process parameters. It includes the principles and describes the main steps and processes in the industrial production of beverages and enzymes. The downstream process and the environmental aspects of the final product are also included.

Industrial and Environmental Microbiology becomes an important application based paper covering microbial fermentations as well as applying the techniques of molecular biology to enzyme technology, animal tissue culture as well as plant tissue culture. Thus, it becomes a laboratory to market scenario where the entire products reach. The learner is provided with the details of productions of important products like antibiotics, vitamins, organic acid and enzymes along with the analysis techniques using various instruments and statistical tools.

The learner is expected to learn the need of Quality management and regulatory bodies as the products need to fulfill these requirements. Thus this paper readies the learner to understand and apply the knowledge of fermentation technology and related products. This course aims to enable graduates to enter industry with an appropriate level of understanding of the need for both the science and business aspects to be achievable to make a viable product and enhance their enterpreunial skills.

Learning Outcomes

Students should be able to-

- Understand the actual process involved in fermentations of important products.
- To apply the knowledge of applications of animal and plant tissue culture techniques.
- Learn the applications of enzymes in various fields.
- Understand the working of important instruments used in biochemical analysis and also learn to analyze the results using statistical tools.
- Learn the salient features of quality management and regulatory procedures.
- Understand the commercial and economic aspects of applied microbiology.

SIUSMIC-64: DETAIL SYLLABUS

Course	Title	L/	Notional
Code		Semester	Periods
	APPLIED MICROBIOLOGY	2.5 Credits(60	Self Study
SIUSMIC64		L)	(60)
	UNIT I TRADITIONAL	15	15
	FERMENATIONS- II	10	10
	i. Penicillin and Semisynthetic Penicillin	04	
	ii. Vitamin B12 from <i>Propionibacterium</i> and	03	
	iii. Pseudomonas	02	
	iv. Glutamic Acid(direct)	02	
	v. Citric acid	03	
	vi. Mushroom	03	
	UNIT II ATC, PTC, ENZYME	15	15
	TECHNOLOGY		
	2.1 Animal Cell Cultivation and applications	05	
	i. Animal Cell Lines,		
	ii. Methods of cultivation and establishment of		
	cell lines		
	iii. Animal cell culture		
	fermenters, Large scale		
	cultivation procedures		
	2.2. Plant Tissue Culture		
	i. Methods of cultivation of organ	05	
	culture, callus culture and cell		
	suspension culture,		
	ii. Application in Agriculture		
	a) (Disease resistant plants,		
	virus free plants)		
	b) Horticulture		
	(Micropropagation)		
	c) Industry (secondary		
	metabolites		
	production),Transgenic plant		
	(Insect resistant plants)		

	05
2.3 Enzyme Technology	
i. Enzyme Immobilization	
methods, Applications in	
therapeutic uses,	
ii. Analytical uses and Industrial uses	
UNIT III	15L
BIOINSTRUMENTATION AND	
BIOSTATISTICS	10
3.1.Bioinstrumentation – Principles, working and	
applications of:	
3.1.1 Flow cytometry	
3.1.2Atomic absorption (AAS) and Atomic	
Emission (Flame photometry)	
3.1.3 Radioisotopes and autoradiography	
3.1.4 Microbiological Assays	
	05
3.2 Biostatistics	
Standard Deviation, Variance, Q-Test, t- test and	
F-test., ANOVA, Chi-square test Linear regression	
UNIT IV	
QUALITY ASSURANCE and REGULATORY	
PRACTICES :	
	07
4.1 Intellectual Property Rights: Introduction to	
Intellectual Property	
Genesis of IPR - GATT, WTO, TRIPS, The World	
Intellectual Property Rights Organization (WIPO)	
Types of Intellectual Property – Patents,	
Copyright, Trademark, Trade secret Plant varieties	
protection act, Designs, Geographical Indications	
Indian Patent office site- http://www.ipindia.nic.in/	
	04
4.2 QA,QC,GMP	
i. Definitions- Manufacture, Quality, Quality	
Control, In-Process Control, Quality	
Assurance, Good Manufacturing	
ii. Practices. Chemicals, Pharmaceuticals,	

	Chemicals and Pharmaceutical production		
iii.	The five variables, In process Items,		
	Finished Products, Labels and Labeling,		
	Packaging materials		
iv.	Documentation, Regulations, Control of		
	Microbial contamination during		
	manufacture, Premises and contamination		
	control Manufacture of sterile products,		
	Clean and Aseptic Area. Important		
	publications related to QA	04	
	Sterilization Control and Sterility		
i.	Bio-burden determinations		
i.			
i.	Bio-burden determinations		
i. ii.	Bio-burden determinations Environmental monitoring		
	Bio-burden determinations Environmental monitoring Sterilization		
	Bio-burden determinations Environmental monitoring Sterilization Monitors – Physical, Chemical and		

T.Y.B.SC. MICROBIOLOGY PRACTICALS (SEMESTER-VI) COURSE CODE: SIUSMICP07

[PRACTICALS BASED ON SIUSMIC61; CREDITS: 1.5, L:60, NOTIONAL PERIODS-15]

- 1. Enrichment of coliphages, phage assay (pilot and proper).
- 2. Restriction digestion of lambda phage /any plasmid DNA
- 3. Amplification of DNA by PCR and confirmation of it by gel electrophoresis [Demo.]
- 4. Western Blot.(Demo)
- 5. Bioinformatics practical
- 6. Animal cell culture(demo)
- 7. On Line Practical
 - a) Visiting NCBI and EMBL websites and list services available, software tools available and databases maintained
 - b) Visiting and exploring various databases mentioned in syllabus and
 - i. Using BLAST and FASTA for sequence analysis
 - ii. Fish out homologs for given specific sequences (by teacher decide sequence of some relevance to their syllabus and related to some biological problem e.g. evolution of a specific protein in bacteria, predicting function of unknown protein from a new organism based on its homology)
 - iii. Six frame translation of given nucleotide sequence
 - iv. Restriction analysis of given nucleotide sequence
 - v. Pair-wise alignment and multiple alignment of a given protein sequences
 - vi. Formation of phylogenetic tree

COURSE CODE: SIUSMICP62 [PRACTICALS BASED ON SIUSMIC62; CREDITS -1.5,L- 60,NOTIONAL PERIODS-15]

- 1. Demonstration of malaria parasite in blood films
- 2. Selection and testing of antibiotics using the Kirby-Bauer method
- 3. Determination of MBC of an antibiotic.
- 4. Blood grouping Direct and Reverse typing
- 5. Coomb's Direct test
- 6. Determination of Isoagglutinin titre
- 7. Demonstration experiments-VDRL

COURSE CODE: SIUSMICP63 [PRACTICALS BASED ON SIUSMIC63; CREDITS -1.5, L- 60, NOTIONAL PERIODS-15]

- 1. To study catabolite repression by diauxic growth curve.
- 2. Protein estimation by Lowry's method
- 3. Estimation of uricacid
- 4. Qualitative and Quantitative assay of Protease
- 5. Qualitative assay of Lipase
- 6. Study of breakdown of amino acids Lysine decarboxylase and Deaminase activity
- 7. Study of Lithotrophs Nitrosification and Nitrification

COURSE CODE: SIUSMICP64

[PRACTICALS BASED ON SIUSMIC64; CREDITS: 1.5, L: 60, NOTIONAL PERIODS 15]

- 1. Bioassay of an antibiotic (Ampicillin)
- 2. Bioassay of Cyanocobalamin.
- 3. Immobilization of yeast cells for invertase activity- making of beads, Determination of activity and count by haemocytometer.
- 4. Carrot explants culture (Demo).
- 5. Sterility testing of injection water.
- 6. Chemical estimation of Penicillin
- 7. Estimation of Phenol
- 8. Biostatistics problem

Semester-VI: Text Books and Reference

Books SIUSMIC 61: Text books:

- 1. A textbook of biotechnology R.C.Dubey 4 thed. S.Chand.
- 2. Arthur Lesk, (2009), "Introduction to Bioinformatics", 3rd Edition, Oxford University Press
- 3. Benjamin A. Pierce (2008), "Genetics a conceptual approach", 3rd ed., W. H. Freeman and company. ed., Pearson Education International.
- Edward Wagner and Martinez Hewlett, (2005) "Basic Virology", 2ndedition, Blackwell Publishing
- 5. Fairbanks and Anderson, (1999), "Genetics", Wadsworth Publishing Company.
- 6. M.Madigan, J.Martinko, J.Parkar, (2009), "Brock Biology of microorganisms", 12th
- 7. Peter J. Russell (2006), "Genetics-A molecular approach", 2nded.
- 8. Prescott, Harley and Klein, "Microbiology", 7th edition Mc Graw Hill international edition.
- 9. Primrose and Twyman, (2001), "Principles of gene manipulation and genomics", 6thed, Blackwell Publishing
- 10. R. H. Tamarin, (2004), "Principles of genetics", Tata McGrawHill..
- 11. Robert Weaver, (2008), "Molecular biology", , 3rd edn. Mc Graw Hillinternational edition.
- 12. S.Ignacimuthu, (2005), "Basic Bioinformatics", Narosa publishing house.
- 13. Snustad, Simmons, "Principles of genetics", 3rdedn. John Wiley and sons, Inc.
- 14. Teri Shors, (2009), "Understanding viruses", Jones and Bartlett publishers.

Reference books:

- 1. Benjamin Lewin, (9th edition), "Genes IX", , Jones and Bartlett publishers.
- 2. Flint, Enquist, Racanillo and Skalka, "Principles of virology", 2ndedn. ASM press.
- 3. JD Watson, "Molecular biology of the gene", 5thedn.
- 4. T. K. Attwood and D. J. Parry-Smith, (2003), "Introduction to bioinformatics", Pearson education

SIUSMIC62 : TEXT BOOKS:

- 1. Ananthanarayan and Panicker's, Textbook of Microbiology, 9thedition
- 2. Bacterial Pathogenesis A molecular approach Abigail Salyer And Dixie Whitt 2nd Ed ASM press
- 3. Fahim Khan, Elements of Immunology, Pearson Education
- 4. Jawetz, Melnick and Adelberg's Medical Microbiology, 26th Edition, Lange publication
- 5. Kuby Immunology, 6th Edition, W H Freeman and Company
- 6. Pathak and Palan, Immunology: Essential and Fundamental, 1stand 3rd Edition, Capital Publishing Company

REFERENCES:

- 1. Baron Samuel , Medical Microbiology, 4theditionhttp://www.ncbi.nlm.nih.gov/books/NBK7627/
- 2. Kuby Immunology, 7th Edition, W H FreemanandCompany
- 3. http://www.macmillanlearning.com/catalog/static/whf/kuby/

SIUSMIC603: TEXT BOOKS

- 1. Cohen, G.N. (2011). Microbial Biochemistry. 2ndedn,Springer
- Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley and Sons. NewYork.
- Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag H. Freeman and Company.
- 4. Madigan, M.T. and J.M. Martinko 2006. Brock Biology of Microorganisms. Pearson Prentice Hall;
- 5. Nelson, D.L.and M.M. Cox(2005), Lehninger, Principles of biochemistry. 4th edition, W.
- 6. Salle, A.J. Fundamental Principles of Bacteriology, 7thedn McGraw Hill Book Co.
- Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd
- 8. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press

REFERENCE BOOKS:

- 1. Principles of Biochemistry, Lehninger, 5th edn W. H. Freeman and Company
- 2. Zubay, G. L (1996), Principles of Biochemistry, Wm. C. Brown publishers

SIUSMIC604: TEXT BOOKS

- 1. Casida L. E., "Industrial Microbiology" 2009 Reprint, New Age International (P) Ltd, Publishers, NewDelhi
- 2. Crueger W. and Crueger A. 2000 "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- 3. H. A. Modi, 2009. "Fermentation Technology" Vol: 1 and 2, Pointer Publications ,India
- 4. Prescott and Dunn's 'Industrial Microbiology''(1982) 4th Edition, McMillan Publishers
- 5. R. C. Dubey, 2005 A Textbook of "Biotechnology" S. Chand and Company, New Delhi
- 6. Research Methodology: Methods and Techniques By C. R. Kothari, New Age International, 2004
- Stanbury P. F., Whitaker A. andHaII--S. J., 1997, "Principles of Fermentation Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.

REFERENCE BOOKS:

- 1. Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1 and 2, Academic Press.
- 2. Principles and application of Statistics in Biosciences by Dr D.V.Kamat (2012),Manan Prakashan

MODALITY OF ASSESSMENT: THEORY EXAMINATION PATTERN

A) Internal Assessment - Theory 40 marks

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project	15
2	One class Test (multiple choice questions / objective)	20
3	Attendance	05

B) External examination - Theory 60 marks

- 1. Unit I-15
- 2. Unit II-15
- 3. Unit III-15
- 4. Unit IV-15

All the above questions will have internal choice

Practical Examination Pattern:

- A. Internal Examination:-There will not be any internal examination/ evaluation for practicals.
- B. External (Semester end practical examination) :-

Sr. No.	Particulars	Marks
1.	Laboratory work	40
2.	Journal	05
3.	Viva/Quiz	05

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head of the Department/ Co-ordinator of the department; failing which the student will not be allowed to appear for the practical examination.

SIUSMIC52 SIUSMIC53 SIUSMIC51 SIUSMIC54 Grand Course Total External Intern al Internal Internal External External External Internal Tot al Total Total al Tot 40 60 100 40 60 100 40 60 100 40 60 100 Theory 400 **Practicals** 50 50 50 50 50 50 50 50 200 _ _ _ -

Overall Examination and Marks Distribution Pattern for Semester V

SEMESTER VI

Course	SIUSMIC61			SIUSMIC62		SIUSMIC63			SIUSMIC64			Grand Total	
	Internal	External	Total	Internal	External	Tot al	Intern al	External	Tot al	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	-	50	50	-	50	50	-	50	50	-	50	50	200